Abstract
To address the poor stability of four-wheel steering vehicles under extreme conditions, this paper proposes a coordinated control strategy for vehicles with four-wheel independent drive. The strategy combines the Active Four-Wheel Steering system with the Direct Yaw Moment Control system. First, a shared steering control model is constructed by considering both the vehicle’s path-tracking performance and handling stability. Based on this model, a control strategy for the four-wheel steering system is proposed using a non-cooperative Nash game. Next, a direct yaw moment controller is designed to improve vehicle lateral stability under dangerous driving conditions. To achieve synergy between rear-wheel steering and direct yaw moment control, a rule-based coordination strategy is introduced to optimize the working intervals of each sub-controller. Finally, experimental verification is performed under double-lane-change and slalom conditions using the CarSim/Simulink hardware-in-the-loop platform. All computations were done in MATLAB R2024a, using specific m-files and Simulink functions for implementation, and the controller was implemented using the Micro-Autobox tool. The results demonstrate that the proposed control strategy significantly enhances vehicle path-tracking accuracy and handling stability under extreme driving conditions.