# Design and Analysis of Dual Mover Multi-Tooth Permanent Magnet Flux Switching Machine for Ropeless Elevator Applications

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Topology and Operation Principle

#### 2.1. Configuration and Design Parameters

#### 2.2. Operation Principle

## 3. Performance Analysis of Initial Design

## 4. Single Variable Optimization for the Proposed Design

## 5. Electromagnetic Performance Analysis

## 6. Analytical Validation of Detent Force and Thrust Force

#### 6.1. Analytical Validation of Detent Force

#### 6.2. Analytical Validation of Average Thrust Force

## 7. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Amara, Y.; Barakat, G. Analytical modeling of magnetic field in surface mounted permanent-magnet tubular linear machines. IEEE Trans. Magn.
**2010**, 46, 38703884. [Google Scholar] [CrossRef] - Chen, J.T.; Zhu, Z.Q.; Howe, D. Stator and rotor pole combinations for multi-tooth flux-switching permanent-magnet brushless AC machines. IEEE Trans. Magn.
**2008**, 44, 4659–4667. [Google Scholar] [CrossRef] - Du, Y.; Ming, C.; Chau, K.T.; Xianxing, L.; Feng, X.; Wenxiang, Z.; Kai, S.; Lihong, M. Comparison of linear primary permanent magnet vernier machine and linear vernier hybrid machine. IEEE Trans. Magn.
**2014**, 50, 1–4. [Google Scholar] [CrossRef][Green Version] - Fan, H.; Chau, K.T.; Chunhua, L.; Libing, C.; Ching, T.W. Quantitative Comparison of Novel Dual-PM Linear Motors for Ropeless Elevator System. IEEE Trans. Magn.
**2018**, 99, 1–6. [Google Scholar] [CrossRef] - Gandhi, A.; Parsa, L. Thrust optimization of a flux-switching linear synchronous machine with yokeless translator. IEEE Trans. Magn.
**2013**, 49, 1436–1443. [Google Scholar] [CrossRef] - Lee, S.G.; Sung, A.K.; Subrat, S.; Yu, W.Z.; Yun, H.C. Optimal structure design for minimizing detent force of PMLSM for a ropeless elevator. IEEE Trans. Magn.
**2014**, 50, 1–4. [Google Scholar] [CrossRef] - Lim, H.S.; Ramu, K.; Nimal, S.L. Design and control of a linear propulsion system for an elevator using linear switched reluctance motor drives. IEEE Trans. Ind. Elect.
**2008**, 55, 534–542. [Google Scholar] [CrossRef] - Lim, H.S.; Ramu, K. Ropeless elevator with linear switched reluctance motor drive actuation systems. IEEE Trans. Ind. Elect.
**2007**, 54, 2209–2218. [Google Scholar] [CrossRef] - Liu, Q.; Haitao, Y.; Minqiang, H.; Chunyuan, L.; Jing, Z.; Lei, H.; Shigui, Z. Cogging force reduction of double-sided linear flux-switching permanent magnet machine for direct drives. IEEE Trans. Magn.
**2013**, 49, 2275–2278. [Google Scholar] [CrossRef] - Liu, C.; Chau, K.T.; Wenlong, L. Comparison of fault-tolerant operations for permanent-magnet hybrid brushless motor drive. IEEE Trans. Magn.
**2010**, 46, 1378–1381. [Google Scholar] [CrossRef] - Lobo, N.S.; Hong, L.; Krishnan, R. Comparison of linear switched reluctance machines for vertical propulsion application: Analysis, design, and experimental correlation. IEEE Trans. Ind. Appl.
**2008**, 44, 1134–1142. [Google Scholar] [CrossRef] - Lu, Q.; Li, H.; Huang, X.; Ye, Y. Research on yokeless double-sided multi-tooth flux-switching linear motor. Int. J. Comput. Math. Elect. Electron. Eng. COMPEL
**2016**, 35, 832–843. [Google Scholar] [CrossRef] - Onat, A.; Kazan, E.; Takahashi, N.; Miyagi, D.; Komatsu, Y.; Markon, S. Design and implementation of a linear motor for multicar elevators. IEEE/ASME Trans. Mechatronics
**2010**, 15, 685–693. [Google Scholar] [CrossRef][Green Version] - Wang, C.F.; Jian, X.S.; Yu, W.; Li, L.W.; Meng, J.J. A new method for reduction of detent force in permanent magnet flux-switching linear motors. IEEE Trans. Magn.
**2009**, 45, 2843–2846. [Google Scholar] [CrossRef] - Yiming, S.; Lu, Q.; Li, H.; Cai, J.; Huang, X.; Fang, Y. Analysis of a Novel Double-Sided Yokeless Multitooth Linear Switched-Flux PM Motor. IEEE Trans. Ind. Elect.
**2018**, 65, 1837–1845. [Google Scholar] [CrossRef] - Zhang, B.; Ming, C.; Sa, Z.; Mingli, Z.; Wei, H.; Ruiwu, C. Investigation of linear flux-switching permanent magnet machine for ropeless elevator. In Proceedings of the IEEE 19th International Conference Electrical Machines and Systems (ICEMS), Chiba, Japan, 13–16 November 2016; pp. 1–5. [Google Scholar]
- Sami, I.; Ullah, S.; Ali, Z.; Ullah, N.; Ro, J.-S. A Super Twisting Fractional Order Terminal Sliding Mode Control for DFIG-Based Wind Energy Conversion System. Energies
**2020**, 13, 2158. [Google Scholar] [CrossRef]

**Figure 1.**Nominal case: (

**a**) Conventional dual permanent magnet (PM) machine for ropeless elevator applications. (

**b**) Proposed dual mover yokeless multi-tooth PMFSM for ropeless elevator applications.

**Figure 5.**Variation of thrust force and thrust ripple for a novel dual mover yokeless multi-tooth PMFSM.

**Figure 6.**Force ripple and thrust force variation with PM height ratio for dual mover yokeless multi-tooth.

**Figure 7.**Force ripple and thrust force variation with mover tooth width for dual mover yokeless multi-tooth PMFSM.

**Figure 8.**Force ripple and thrust force variation with stator tooth width for dual mover yokeless multi-tooth PMFSM.

**Figure 10.**Variation of thrust ripples and thrust force with PM width for dual mover yokeless multi-tooth PMFSM.

**Figure 11.**Comparison of thrust force for the conventional and proposed machine for ropeless elevator application.

**Figure 17.**Comparison of thrust force obtained by Maxwell Stress Tensor (MST) and finite element analysis (FEA).

Parameters | Conventional | Proposed |
---|---|---|

Np | 12 | 12 |

Primary slot pitch, Tp (mm) | 26.2 | 50.4 |

Motor Height, h | 93 | 93 |

air gap length (mm) | 1.5 | 1.5 |

Stack length, L (mm) | 200 | 200 |

Wire size (mm) | 0.8 | 0.8 |

Number of turns | 200 | 200 |

PM Height | 3 | 37.5 |

PM width, Wpm (mm) | 13.1 | 3.2 |

Primary Tooth width, Wpt (mm) | 2.2 | 2.2 |

Mover length, (mm) | 300 | 300 |

Average Speed (m/s) | 1 | 1 |

Current (A) | 4.5 | 4.5 |

Parameters | Initial Values | Optimal Values |
---|---|---|

Split Ratio | 0.31 | 0.27 |

PM Height ratio | 0.78 | 0.85 |

Stator tooth width ratio | 0.34 | 0.375 |

Mover tooth width (mm) | 4.7 | 6.5 |

PM width (mm) | 5.6 | 4.3 |

Mover tooth height (mm) | 1.7 | 2.5 |

Performance Parameters | Initial Values | Optimal Values |
---|---|---|

Detent Force $\left(\mathrm{N}\right)$ | 1.6 | 0.5 |

Thrust Force $\left(\mathrm{N}\right)$ | 1570 | 1326 |

Thrust Ripple Ratio $(\%)$ | 84.4 | 32.5 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zahid, A.; Khan, F.; Ahmad, N.; Sami, I.; Ullah, W.; Ullah, N.; Ullah, N.; Alkhammash, H.I. Design and Analysis of Dual Mover Multi-Tooth Permanent Magnet Flux Switching Machine for Ropeless Elevator Applications. *Actuators* **2021**, *10*, 81.
https://doi.org/10.3390/act10040081

**AMA Style**

Zahid A, Khan F, Ahmad N, Sami I, Ullah W, Ullah N, Ullah N, Alkhammash HI. Design and Analysis of Dual Mover Multi-Tooth Permanent Magnet Flux Switching Machine for Ropeless Elevator Applications. *Actuators*. 2021; 10(4):81.
https://doi.org/10.3390/act10040081

**Chicago/Turabian Style**

Zahid, Atif, Faisal Khan, Naseer Ahmad, Irfan Sami, Wasiq Ullah, Nasim Ullah, Noman Ullah, and Hend I. Alkhammash. 2021. "Design and Analysis of Dual Mover Multi-Tooth Permanent Magnet Flux Switching Machine for Ropeless Elevator Applications" *Actuators* 10, no. 4: 81.
https://doi.org/10.3390/act10040081