Exposures Associated with Non-Typhoidal Salmonella Infections Caused by Newport, Javiana, and Mississippi Serotypes in Tennessee, 2013–2015: A Case-Case Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Study Design
2.3. Data Cleaning
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the united states—Major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef]
- CDC. Multistate outbreak of salmonella serotype typhimurium infections associated with drinking unpasteurized milk—Illinois, Indiana, Ohio, and Tennessee, 2002–2003. MMWR Morb. Mortal. Wkly. Rep. 2003, 52, 613. [Google Scholar]
- CDC. Multistate outbreak of salmonella typhimurium infections associated with eating ground beef—United States, 2004. MMWR Morb. Mortal. Wkly. Rep. 2006, 55, 180. [Google Scholar]
- CDC. Multistate outbreak of salmonella infections associated with frozen pot pies—United States, 2007. MMWR Morb. Mortal. Wkly. Rep. 2008, 57, 1277. [Google Scholar]
- CDC. Outbreak of multidrug-resistant salmonella enterica serotype newport infections associated with consumption of unpasteurized mexican-style aged cheese—Illinois, March 2006–April 2007. MMWR Morb. Mortal. Wkly. Rep. 2008, 57, 432–435. [Google Scholar]
- Clarkson, L.S.; Tobin-D’Angelo, M.; Shuler, C.; Hanna, S.; Benson, J.; Voetsch, A.C. Sporadic salmonella enterica serotype javiana infections in georgia and tennessee: A hypothesis-generating study. Epidemiol. Infect. 2010, 138, 340–346. [Google Scholar] [CrossRef] [Green Version]
- Friedman, C.R.; Torigian, C.; Shillam, P.J.; Hoffman, R.E.; Heltzel, D.; Beebe, J.L.; Malcolm, G.; DeWitt, W.E.; Hutwagner, L.; Griffin, P.M. An outbreak of salmonellosis among children attending a reptile exhibit at a zoo. J. Pediatr. 1998, 132, 802–807. [Google Scholar] [CrossRef]
- Hale, C.R.; Scallan, E.; Cronquist, A.B.; Dunn, J.; Smith, K.; Robinson, T.; Lathrop, S.; Tobin-D’Angelo, M.; Clogher, P. Estimates of enteric illness attributable to contact with animals and their environments in the united states. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2012, 54 (Suppl. 5), S472–S479. [Google Scholar] [CrossRef] [Green Version]
- Hoelzer, K.; Moreno Switt, A.I.; Wiedmann, M. Animal contact as a source of human non-typhoidal salmonellosis. Vet. Res. 2011, 42, 34. [Google Scholar] [CrossRef] [Green Version]
- de Jong, B.; Andersson, Y.; Ekdahl, K. Effect of regulation and education on reptile-associated salmonellosis. Emerg. Infect. Dis. 2005, 11, 398–403. [Google Scholar] [CrossRef]
- Boore, A.L.; Hoekstra, R.M.; Iwamoto, M.; Fields, P.I.; Bishop, R.D.; Swerdlow, D.L. Salmonella enterica infections in the united states and assessment of coefficients of variation: A novel approach to identify epidemiologic characteristics of individual serotypes, 1996–2011. PLoS ONE 2015, 10, e0145416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srikantiah, P.; Lay, J.C.; Hand, S.; Crump, J.A.; Campbell, J.; Van Duyne, M.S.; Bishop, R.; Middendor, R.; Currier, M.; Mead, P.S.; et al. Salmonella enterica serotype javiana infections associated with amphibian contact, mississippi, 2001. Epidemiol. Infect. 2004, 132, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, N. Source Attribution, Antibiotic Resistance and Virulence Properties of Salmonella Serotypes Isolated from Clinically Disgnosed Human Salmonellosis Cases from Tennessee. Ph.D. Thesis, University of Memphis, Memphis, TN, USA, 2018. [Google Scholar]
- Mukherjee, N.; Nolan, V.G.; Dunn, J.R.; Banerjee, P. Sources of human infection by salmonella enterica serotype javiana: A systematic review. PLoS ONE 2019, 14, e0222108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- TDH. Interactive dashboard for selected reportable diseases and events. In Communicable and Environmental Diseases and Emergency Preparedness (CEDEP) 2010–2012 Annual Report. Available online: https://www.tn.gov/content/dam/tn/health/documents/cedep-weeklyreports/AnnualReport2010-12.pdf (accessed on 21 January 2020).
- LPH. Salmonella annual report 2018. In Louisiana Office of Public Health—Infectious Disease Epidemiology Section; 2018. Available online: http://ldh.la.gov/assets/oph/Center-PHCH/Center-CH/infectious-epi/Annuals/Salmonella_LaIDAnnual_2018.docx.pdf (accessed on 21 January 2020).
- Harris, J.R.; Neil, K.P.; Behravesh, C.B.; Sotir, M.J.; Angulo, F.J. Recent multistate outbreaks of human salmonella infections acquired from turtles: A continuing public health challenge. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2010, 50, 554–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez, S.; Hofacre, C.L.; Lee, M.D.; Maurer, J.J.; Doyle, M.P. Animal sources of salmonellosis in humans. J. Am. Vet. Med. Assoc. 2002, 221, 492–497. [Google Scholar] [CrossRef] [Green Version]
- Stam, F.; Römkens, T.E.H.; Hekker, T.A.M.; Smulders, Y.M. Turtle-associated human salmonellosis. Clin. Infect. Dis. 2003, 37, e167–e169. [Google Scholar] [CrossRef] [Green Version]
- Cummings, K.J.; Warnick, L.D.; Davis, M.A.; Eckmann, K.; Gröhn, Y.T.; Hoelzer, K.; MacDonald, K.; Root, T.P.; Siler, J.D.; McGuire, S.M. Farm animal contact as risk factor for transmission of bovine-associated salmonella subtypes. Emerg. Infect. Dis. 2012, 18, 1929. [Google Scholar] [CrossRef]
- Amadi, V.A.; Hariharan, H.; Arya, G.; Matthew-Belmar, V.; Nicholas-Thomas, R.; Pinckney, R.; Sharma, R.; Johnson, R. Serovars and antimicrobial resistance of non-typhoidal salmonella isolated from non-diarrhoeic dogs in grenada, west indies. Vet. Med. Sci. 2018, 4, 26–34. [Google Scholar] [CrossRef]
- Behravesh, C.B.; Ferraro, A.; Deasy, M., 3rd; Dato, V.; Moll, M.; Sandt, C.; Rea, N.K.; Rickert, R.; Marriott, C.; Warren, K.; et al. Human salmonella infections linked to contaminated dry dog and cat food, 2006–2008. Pediatrics 2010, 126, 477–483. [Google Scholar] [CrossRef]
- Clark, C.; Cunningham, J.; Ahmed, R.; Woodward, D.; Fonseca, K.; Isaacs, S.; Ellis, A.; Anand, C.; Ziebell, K.; Muckle, A.; et al. Characterization of salmonella associated with pig ear dog treats in canada. J. Clin. Microbiol. 2001, 39, 3962–3968. [Google Scholar] [CrossRef] [Green Version]
- Finley, R.; Reid-Smith, R.; Weese, J.S.; Angulo, F.J. Human health implications of salmonella-contaminated natural pet treats and raw pet food. Clin. Infect. Dis. 2006, 42, 686–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- KuKanich, K.S. Update on salmonella spp contamination of pet food, treats, and nutritional products and safe feeding recommendations. J. Am. Vet. Med. Assoc. 2011, 238, 1430–1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitout, J.D.; Reisbig, M.D.; Mulvey, M.; Chui, L.; Louie, M.; Crowe, L.; Church, D.L.; Elsayed, S.; Gregson, D.; Ahmed, R.; et al. Association between handling of pet treats and infection with salmonella enterica serotype newport expressing the ampc beta-lactamase, cmy-2. J. Clin. Microbiol. 2003, 41, 4578–4582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, Y.C.; Cho, S.Y.; Park, B.K.; Chung, D.H.; Oh, D.H. Incidence and characterization of listeria spp. From foods available in korea. J. Food Prot. 2001, 64, 554–558. [Google Scholar] [CrossRef] [PubMed]
- Rushdy, A.A.; Stuart, J.M.; Ward, L.R.; Bruce, J.; Threlfall, E.J.; Punia, P.; Bailey, J.R. National outbreak of salmonella senftenberg associated with infant food. Epidemiol. Infect. 1998, 120, 125–128. [Google Scholar] [CrossRef]
- Sockett, P.N.; Rodgers, F.G. Enteric and foodborne disease in children: A review of the influence of food- and environment-related risk factors. Paediatr. Child Health 2001, 6, 203–209. [Google Scholar] [CrossRef]
- CDC. Outbreak of salmonella serotype saintpaul infections associated with multiple raw produce items—United States, 2008. MMWR Morb. Mortal. Wkly. Rep. 2008, 57, 929–934. [Google Scholar]
- Angelo, K.M.; Chu, A.; Anand, M.; Nguyen, T.-A.; Bottichio, L.; Wise, M.; Williams, I.; Seelman, S.; Bell, R.; Fatica, M. Outbreak of salmonella newport infections linked to cucumbers—United States, 2014. MMWR Morb. Mortal. Wkly. Rep. 2015, 64, 144–147. [Google Scholar]
- Greene, S.K.; Daly, E.R.; Talbot, E.A.; Demma, L.J.; Holzbauer, S.; Patel, N.J.; Hill, T.A.; Walderhaug, M.O.; Hoekstra, R.M.; Lynch, M.F.; et al. Recurrent multistate outbreak of salmonella newport associated with tomatoes from contaminated fields, 2005. Epidemiol. Infect. 2008, 136, 157–165. [Google Scholar] [CrossRef]
- CDC. Outbreaks of salmonella infections associated with eating roma tomatoes United States and Canada, 2004. MMWR Morb. Mortal. Wkly. Rep. 2005, 54, 325–328. [Google Scholar]
- Hedberg, C.W.; Angulo, F.J.; White, K.E.; Langkop, C.W.; Schell, W.L.; Stobierski, M.G.; Schuchat, A.; Besser, J.M.; Dietrich, S.; Helsel, L.; et al. Outbreaks of salmonellosis associated with eating uncooked tomatoes: Implications for public health. The investigation team. Epidemiol. Infect. 1999, 122, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Srikantiah, P.; Bodager, D.; Toth, B.; Kass-Hout, T.; Hammond, R.; Stenzel, S.; Hoekstra, R.M.; Adams, J.; Van Duyne, S.; Mead, P.S. Web-based investigation of multistate salmonellosis outbreak. Emerg. Infect. Dis. 2005, 11, 610–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alley, R.D.; Pijoan, M. Salmonella javiana food infection. Yale J. Biol. Med. 1942, 15, 229–239. [Google Scholar] [PubMed]
- Hedberg, C.W.; Korlath, J.A.; D’Aoust, J.Y.; White, K.E.; Schell, W.L.; Miller, M.R.; Cameron, D.N.; MacDonald, K.L.; Osterholm, M.T. A multistate outbreak of salmonella javiana and salmonella oranienburg infections due to consumption of contaminated cheese. JAMA 1992, 268, 3203–3207. [Google Scholar] [CrossRef] [PubMed]
- Venkat, H.; Matthews, J.; Lumadao, P.; Caballero, B.; Collins, J.; Fowle, N.; Kellis, M.; Tewell, M.; White, S.; Hassan, R.; et al. Salmonella enterica serotype javiana infections linked to a seafood restaurant in maricopa county, arizona, 2016. J. Food Prot. 2018, 81, 1283–1292. [Google Scholar] [CrossRef]
- Gupta, A.; Fontana, J.; Crowe, C.; Bolstorff, B.; Stout, A.; Van Duyne, S.; Hoekstra, M.P.; Whichard, J.M.; Barrett, T.J.; Angulo, F.J. Emergence of multidrug-resistant salmonella enterica serotype newport infections resistant to expanded-spectrum cephalosporins in the united states. J. Infect. Dis. 2003, 188, 1707–1716. [Google Scholar] [CrossRef] [Green Version]
- Karon, A.E.; Archer, J.R.; Sotir, M.J.; Monson, T.A.; Kazmierczak, J.J. Human multidrug-resistant salmonella newport infections, wisconsin, 2003–2005. Emerg. Infect. Dis. 2007, 13, 1777–1780. [Google Scholar] [CrossRef]
- Su, C.-P.; de Perio, M.A.; Fagan, K.; Smith, M.L.; Salehi, E.; Levine, S.; Gruszynski, K.; Luckhaupt, S.E. Occupational distribution of campylobacteriosis and salmonellosis cases—maryland, ohio, and virginia, 2014. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 850. [Google Scholar] [CrossRef] [Green Version]
- Wells, S.J.; Fedorka-Cray, P.J.; Dargatz, D.A.; Ferris, K.; Green, A. Fecal shedding of salmonella spp. By dairy cows on farm and at cull cow markets. J. Food Prot. 2001, 64, 3–11. [Google Scholar] [CrossRef]
- Hanning, I.B.; Nutt, J.D.; Ricke, S.C. Salmonellosis outbreaks in the united states due to fresh produce: Sources and potential intervention measures. Foodborne Pathog. Dis. 2009, 6, 635–648. [Google Scholar] [CrossRef]
Variables | Case, n * = 640 (%) | Comparison Group, n * = 2117 (%) | OR (95% CI) | P-Value | |
---|---|---|---|---|---|
Gender | Female | 333 (52) | 1106 (53) | Reference | Reference |
Male | 306 (48) | 996 (47) | 1.0 (0.8, 1.2) | 0.82 | |
Race | White | 483 (84) | 1525 (84) | 1.0 (0.8, 1.3) | 0.70 |
Others | 91 (16) | 298 (16) | Reference | Reference | |
Ethnicity | Hispanic | 9 (2) | 66 (4) | Reference | Reference |
Non-Hispanic | 570 (98) | 1739 (96) | 2.4 (1.2, 4.8) | 0.01 | |
Age (years) | <1 | 86 (13) | 168 (8) | 2.3 (1.6, 3.2) | <0.0001 |
1–4 | 112 (18) | 304 (14) | 1.6 (1.2, 2.2) | <0.01 | |
5–12 | 68 (11) | 212 (10) | 1.4 (1.0, 2.1) | 0.05 | |
13–20 | 38 (6) | 147 (7) | 1.2 (0.8, 1.8) | 0.50 | |
21–40 | 83 (13) | 369 (18) | Reference | Reference | |
41–60 | 118 (18) | 448 (21) | 1.2 (0.9, 1.6) | 0.30 | |
≥61 | 135 (21) | 464 (22) | 1.3 (1.0, 1.8) | 0.09 | |
Region | East Grand Region | 151 (24) | 736 (35) | Reference | Reference |
Middle Grand Region | 147 (23) | 811 (38) | 0.9 (0.7, 1.1) | 0.32 | |
West Grand Region | 342 (53) | 565 (27) | 3.0 (2.4, 3.7) | <0.0001 | |
Year | 2013 | 174 (27) | 698 (33) | Reference | Reference |
2014 | 266 (42) | 697 (33) | 1.5 (1.2, 1.9) | <0.001 | |
2015 | 200 (31) | 717 (34) | 1.1 (0.9, 1.4) | 0.30 | |
Serotype | S. Newport | 299 (47) | 0 (0) | - | - |
S. Javiana | 239 (37) | 0 (0) | - | - | |
S. Mississippi | 102 (16) | 0 (0) | - | - |
Variables | Participants, n * = 1578 (%) | Non-Participants, n * = 1179 (%) | OR (95% CI) | P-Value | |
---|---|---|---|---|---|
Gender | Female | 874 (56) | 566 (48) | Reference | Reference |
Male | 696 (44) | 610 (52) | 0.7 (0.6, 0.9) | <0.0001 | |
Race | White | 1285 (88) | 725 (77) | 2.3 (1.8, 2.8) | <0.0001 |
Others | 171 (12) | 220 (23) | Reference | Reference | |
Ethnicity | Hispanic | 44 (3) | 32 (3) | Reference | Reference |
Non-Hispanic | 1376 (97) | 937 (97) | 1.1 (0.7, 1.7) | 0.70 | |
Age (years) | <1 | 158 (10) | 96 (8) | 1.6 (1.2, 2.2) | <0.001 |
1–4 | 230 (15) | 188 (16) | 1.2 (0.9, 1.5) | 0.24 | |
5–12 | 155 (10) | 125 (11) | 1.2 (0.9, 1.6) | 0.20 | |
13–20 | 88 (5) | 97 (8) | 0.9 (0.6, 1.2) | 0.41 | |
21–40 | 231 (15) | 221 (19) | Reference | Reference | |
41–60 | 352 (22) | 215 (18) | 1.6 (1.2, 2.0) | <0.0001 | |
≥61 | 364 (23) | 237 (20) | 1.5 (1.2, 1.9) | <0.001 | |
Region | East Grand Region | 545 (35) | 344 (29) | Reference | Reference |
Middle Grand Region | 621 (39) | 337 (29) | 1.2 (1.0, 1.4) | 0.11 | |
West Grand Region | 412 (26) | 498 (42) | 0.5 (0.4, 0.6) | <0.0001 | |
Year | 2013 | 446 (28) | 426 (36) | Reference | Reference |
2014 | 617 (39) | 349 (30) | 1.7 (1.4, 2.0) | <0.0001 | |
2015 | 515 (33) | 404 (34) | 1.2 (1.0, 1.5) | 0.03 | |
Case | Comparison group | 1246 (79) | 866 (74) | Reference | Reference |
Cases | 331 (21) | 309 (26) | 0.8 (0.6, 0.9) | 0.001 |
Variables | Case, n * = 331 (%) | Comparison Group, n * = 1246 (%) | OR (95% CI) | P-Value | |
---|---|---|---|---|---|
Gender | Female | 171 (52) | 703 (57) | Reference | Reference |
Male | 159 (48) | 536 (43) | 1.2 (1.0, 1.5) | 0.11 | |
Race | White | 276 (88) | 1008 (88) | 0.9 (0.6, 1.4) | 0.70 |
Others | 39 (12) | 132 (12) | Reference | Reference | |
Ethnicity | Hispanic | 5 (2) | 39 (4) | Reference | Reference |
Non-Hispanic | 304 (98) | 1071 (96) | 2.2 (0.9, 5.7) | 0.10 | |
Age (years) | <1 | 49 (15) | 109 (9) | 2.5 (1.5, 4.1) | <0.001 |
1–4 | 58 (18) | 171 (14) | 1.9 (1.2, 3.0) | <0.01 | |
5–12 | 40 (12) | 115 (9) | 2.0 (1.2, 3.2) | 0.01 | |
13–20 | 11 (3) | 77 (6) | 0.8 (0.4, 1.6) | 0.50 | |
21–40 | 35 (10) | 196 (16) | Reference | Reference | |
41–60 | 66 (20) | 286 (23) | 1.3 (0.8, 2.0) | 0.20 | |
≥61 | 72 (22) | 292 (23) | 1.4 (0.9, 2.1) | 0.10 | |
Region | East Grand Region | 82 (25) | 462 (37) | Reference | Reference |
Middle Grand Region | 92 (28) | 529 (42) | 1.0 (0.7, 1.4) | 0.90 | |
West Grand Region | 157 (47) | 255 (21) | 3.5 (2.6, 4.7) | <0.0001 | |
Year | 2013 | 80 (24) | 366 (29) | Reference | Reference |
2014 | 154 (47) | 462 (37) | 1.5 (1.1, 2.0) | <0.001 | |
2015 | 97 (29) | 418 (34) | 1.1 (0.8, 1.5) | 0.72 | |
Serotype | S. Newport | 170 (51) | 0 (0) | - | - |
S. Javiana | 116 (35) | 0 (0) | - | - | |
S. Mississippi | 45 (14) | 0 (0) | - | - |
Exposure | Unadjusted OR (95% CI) | Adjusted OR (95% CI) | P-Value @ |
---|---|---|---|
Consumed dairy and poultry products in the 7 days prior to illness | |||
Any cheese | 0.7 (0.5, 0.9) | <0.01 | |
Processed sliced cheese | 0.8 (0.6, 1.1) | 0.11 | |
String cheese | 0.7 (0.4, 1.1) | 0.16 | |
Cottage cheese | 0.4 (0.2, 0.8) | 0.01 | |
Fresh/dried Parmesan/Romano/or similar cheese | 0.5 (0.3, 0.8) | 0.01 | |
Eggs | 0.6 (0.4, 0.9) | 0.03 | |
Ice cream | 1.3 (0.9, 1.7) | 0.09 | |
Whole chicken | 0.7 (0.6, 0.9) | 0.02 | |
Consumed frozen foods in the 7 days prior to illness | |||
Frozen pizza | 1.4 * (1.0, 1.9) | 0.02 | |
Ate out at restaurants in the 7 days prior to illness | |||
Ate out at Mexican/Tex-Mex restaurants | 0.7 (0.4,1.0) | 0.10 | |
Ate out at Seafood restaurants | 0.5 (0.2, 1.0) | 0.05 | |
Consumed fish and seafood in the 7 days prior to illness | |||
Ate any type of fish or fish products | 0.7 (0.5, 0.9) | 0.02 | |
Consumed vegetables in the 7 days prior to illness | |||
Asparagus | 0.5 (0.3, 0.9) | 0.03 | |
Avocados | 0.7 (0.4, 1.2) | 0.20 | |
Broccoli | 0.7 (0.5, 1.0) | 0.08 | |
Bell peppers (green/red/yellow/orange) | 0.6 (0.4, 0.9) | <0.01 | |
Carrots | 0.8 (0.5,1.0) | 0.11 | |
Fresh herbs or spices (e.g., basil, parsley, and cilantro) | 0.5 (0.3, 1.0) | 0.04 | |
Fresh lemon or lime (including any garnishes in drinks) | 0.7 (0.4, 1.0) | 0.04 | |
Hot chili/chili peppers (e.g., jalapeños or seranos) | 0.5 (0.2, 0.9) | 0.04 | |
Lettuce or other greens (including on a sandwich) | 0.7 (0.5, 1.0) | <0.01 | |
Green onions | 0.6 (0.3, 1.1) | 0.11 | |
White or yellow onions | 0.7 (0.5, 0.9) | 0.01 | |
Potatoes | 0.7 (0.504, 0.9) | <0.01 | |
Salsa or pico de gallo | 0.7 (0.4, 1.0) | 0.06 | |
Any tomatoes | 0.8 (0.6, 1.0) | 0.04 | |
Grape tomatoes | 0.4 (0.2, 1.2) | 0.11 | |
Roma tomatoes | 0.6 (0.3, 1.2) | 0.15 | |
Tomatoes sold on vine | 0.3 (0.1, 0.5) | <0.0001 | |
Consumed fruits in the 7 days prior to illness | |||
Apples | 0.8 (0.6, 1.0) | 0.12 | |
Banana | 0.8 (0.6, 1.0) | 0.12 | |
Blackberries | 0.6 (0.3, 1.1) | 0.09 | |
Grapefruit | 0.5 (0.2, 1.4) | 0.2 | |
Mango | 0.3 (0.1, 0.9) | 0.02 | |
Pineapple | 0.6 (0.4, 1.0) | 0.03 | |
Tangerines | 0.5 (0.2, 0.9) | 0.03 | |
Consumed nuts and seeds in the 7 days prior to illness | |||
Almonds | 0.7 (0.4, 1.1) | 0.11 | |
Cashews | 0.5 (0.3, 0.9) | 0.03 | |
Whole peanuts | 0.7 (0.5, 1.1) | 0.13 | |
Consumed baby foods in the 7 days prior to illness | |||
Powdered baby formula | 1.7 ** (1.1, 2.4) | <0.01 | |
Store-bought pureed baby food (e.g., Gerber) | 1.5 ** (0.9, 2.4) | 0.10 | |
Water exposure in the 7 days prior to illness | |||
Source of water at school/work—do not use tap water | 0.4 (0.2, 0.9) | 0.02 | |
Source of water at school/work—well water | 2.9 † (0.8, 10.7) | 0.11 | |
Recreational water exposure | 1.3 (0.9, 1.7) | 0.18 | |
Contact with a live animal, pet, and pet food in the 7 days prior to illness | |||
Visit to a farm | 2.2 # (1.2, 3.7) | <0.01 | |
Contact with any animal | 1.2 (0.9, 1.4) | 0.15 | |
Contact with a mammal | 1.2 (0.9, 1.5) | 0.17 | |
Contact with a dog | 1.3 (1.0, 1.7) | 0.02 | |
Contact with a tropical fish or aquariums | 0.5 (0.2, 1.0) | 0.07 | |
Contact with pet treats or chews | 1.7 *** (1.2, 2.3) | <0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukherjee, N.; Nolan, V.G.; Dunn, J.R.; Banerjee, P. Exposures Associated with Non-Typhoidal Salmonella Infections Caused by Newport, Javiana, and Mississippi Serotypes in Tennessee, 2013–2015: A Case-Case Analysis. Pathogens 2020, 9, 78. https://doi.org/10.3390/pathogens9020078
Mukherjee N, Nolan VG, Dunn JR, Banerjee P. Exposures Associated with Non-Typhoidal Salmonella Infections Caused by Newport, Javiana, and Mississippi Serotypes in Tennessee, 2013–2015: A Case-Case Analysis. Pathogens. 2020; 9(2):78. https://doi.org/10.3390/pathogens9020078
Chicago/Turabian StyleMukherjee, Nabanita, Vikki G. Nolan, John R. Dunn, and Pratik Banerjee. 2020. "Exposures Associated with Non-Typhoidal Salmonella Infections Caused by Newport, Javiana, and Mississippi Serotypes in Tennessee, 2013–2015: A Case-Case Analysis" Pathogens 9, no. 2: 78. https://doi.org/10.3390/pathogens9020078
APA StyleMukherjee, N., Nolan, V. G., Dunn, J. R., & Banerjee, P. (2020). Exposures Associated with Non-Typhoidal Salmonella Infections Caused by Newport, Javiana, and Mississippi Serotypes in Tennessee, 2013–2015: A Case-Case Analysis. Pathogens, 9(2), 78. https://doi.org/10.3390/pathogens9020078