Evaluation of Ascorbic Acid or Curcumin Formulated in a Solid Dispersion on Salmonella Enteritidis Infection and Intestinal Integrity in Broiler Chickens
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Preparation of Experimental Treatments and Diets
4.2. Salmonella Strain and Culture Conditions
4.3. Experimental Design
4.3.1. Prophylactic Model
4.3.2. Therapeutic Model
4.4. Salmonella and Total Aerobic Bacteria (TAB) Counts
4.5. Serum FITC-d Levels
4.6. Superoxide Dismutase Activity
4.7. Total Intestinal Immunoglobulin A (IgA) Levels
4.8. Data and Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nair, D.V.T.; Venkitanarayanan, K.; Johny, A.K. Antibiotic-Resistant Salmonella in the Food Supply and the Potential Role of Antibiotic Alternatives for Control. Foods 2018, 7, 167. [Google Scholar] [CrossRef]
- Cheng, G.; Hao, H.; Xie, S.; Wang, X.; Dai, M.; Huang, L.; Yuan, Z. Antibiotic alternatives: The substitution of antibiotics in animal husbandry? Front. Microbiol. 2014, 5, 217. [Google Scholar] [CrossRef]
- Hao, H.; Cheng, G.; Iqbal, Z.; Ai, X.; Hussain, H.I.; Huang, L.; Dai, M.; Wang, Y.; Liu, Z.; Yuan, Z. Benefits and risks of antimicrobial use in food-producing animals. Front. Microbiol. 2014, 5, 288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, B.M.; Levy, S.B. Food Animals and Antimicrobials: Impacts on Human Health. Clin. Microbiol. Rev. 2011, 24, 718–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borck Høg, B.; Korsgaard, H.B.; Wolff Sönksen, U.; Bager, F.; Bortolaia, V.; Ellis-Iversen, J.; Hendriksen, R.S.; Borck Høg, B.; Jensen, L.B.; Korsgaard, H.B.; et al. DANMAP 2016-Use of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria from Food Animals, Food and Humans in Denmark; Statens Serum Institut, National Veterinary Institute, Technical University of Denmark National Food Institute: Lyngby, Denmark, 2017; Available online: https://orbit.dtu.dk/files/140535625/DANMAP_2016_LOW_241017.pdf (accessed on 10 August 2019).
- Founou, L.L.; Founou, R.C.; Essack, S.Y. Antibiotic Resistance in the Food Chain: A Developing Country-Perspective. Front. Microbiol. 2016, 7, 1881. [Google Scholar] [CrossRef] [PubMed]
- Lillehoj, H.; Liu, Y.; Calsamiglia, S.; Fernandez-Miyakawa, M.E.; Chi, F.; Cravens, R.L.; Oh, S.; Gay, C.G. Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Vet. Res. 2018, 49, 76. [Google Scholar] [CrossRef] [PubMed]
- WHO Salmonella (Non-Typhoidal). 2018. Available online: https://www.who.int/es/news-room/fact-sheets/detail/salmonella-(non-typhoidal) (accessed on 12 August 2019).
- Johannah, N.M.; Joseph, A.; Maliakel, B.; Krishnakumar, I.M. Dietary addition of a standardized extract of turmeric (TurmaFEED TM) improves growth performance and carcass quality of broilers. J. Anim. Sci. Technol. 2018, 60, 8. [Google Scholar]
- Luna, A.; Lema-Alba, R.C.; Dambolena, J.S.; Zygadlo, J.A.; Labaque, M.C.; Marin, R.H. Thymol as natural antioxidant additive for poultry feed: Oxidative stability improvement. Poult. Sci. 2017, 96, 3214–3220. [Google Scholar] [CrossRef]
- Surai, P.F. Natural Antioxidants in Poultry Nutrition: New Developments. In Proceedings of the 16th European Symposium on Poultry Nutrition, World Poultry Science Association, Strasbourg, France, 26–30 August 2007. [Google Scholar]
- Chakraborthy, A.; Ramani, P.; Sherlin, H.; Premkumar, P.; Natesan, A. Antioxidant and pro-oxidant activity of Vitamin C in oral environment. Indian J. Dent. Res. 2014, 25, 499. [Google Scholar] [CrossRef]
- Carr, A.; Maggini, S. Vitamin C and immune function. Nutrients 2017, 9, 1211. [Google Scholar] [CrossRef]
- Traber, M.G.; Buettner, G.R.; Bruno, R.S. The relationship between vitamin C status, the gut-liver axis, and metabolic syndrome. Redox Biol. 2018, 21, 101091. [Google Scholar] [CrossRef] [PubMed]
- Lohakare, J.D.; Lee, J.K.; Chae, B.J.; Ryu, M.H.; Hahn, T.-W. Effects of Supplemental Ascorbic Acid on the Performance and Immunity of Commercial Broilers. J. Appl. Poult. Res. 2005, 14, 10–19. [Google Scholar] [CrossRef]
- Malik, P.; Mukherjee, T.K. Structure-Function Elucidation of Antioxidative and Prooxidative Activities of the Polyphenolic Compound Curcumin. Chin. J. Biol. 2014, 2014, 396708. [Google Scholar] [CrossRef]
- Khan, R.; Naz, S.; Javdani, M.; Nikousefat, Z.; Selvaggi, M.; Tufarelli, V.; Laudadio, V. The use of Turmeric (Curcuma longa) in poultry feed. World Poult. Sci. J. 2012, 68, 97–103. [Google Scholar] [CrossRef]
- Ramos, L.; Paredes, J.C.Z.; Moreno, C.; Ruales, P.; Guil-Guerrero, J.L.; Carlosama-Yépez, M. Effects of turmeric rhizome powder and curcumin in poultry production. A review. J. Anim. Feed. Sci. 2017, 26, 293–302. [Google Scholar]
- Hernández-Patlán, D.; Solís-Cruz, B.; Pontin, K.P.; Latorre, J.D.; Baxter, M.F.A.; Hérnandez-Velasco, X.; Merino-Guzmán, R.; Méndez-Albores, A.; Hargis, B.M.; López-Arellano, R.; et al. Evaluation of a Solid Dispersion of Curcumin with Polyvinylpyrrolidone and Boric Acid Against Salmonella Enteritidis Infection and Intestinal Permeability in Broiler Chickens: A Pilot Study. Front. Microbiol. 2018, 9, 1289. [Google Scholar] [CrossRef] [PubMed]
- Paolino, D.; Vero, A.; Cosco, D.; Pecora, T.M.G.; Cianciolo, S.; Fresta, M.; Pignatello, R. Improvement of Oral Bioavailability of Curcumin upon Microencapsulation with Methacrylic Copolymers. Front. Pharmacol. 2016, 7, 485. [Google Scholar] [CrossRef]
- Tran, K.A.; Tran, T.T.D.; Van Vo, T.; Van Tran, T.; Tran, P.H.L. Investigation of Solid Dispersion Methods to Improve the Dissolution Rate of Curcumin. In Proceedings of the 5th International Conference on Biomedical Engineering in Vietnam, Ho Chi Minh, Vietnam, 16–18 June 2014; Van Toi, V., Lien Phuong, T.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 293–297. [Google Scholar]
- Cervantes, H.M. Antibiotic-free poultry production: Is it sustainable? J. Appl. Poult. Res. 2015, 24, 91–97. [Google Scholar] [CrossRef]
- Mani-López, E.; Garcia, H.; López-Malo, A. Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Res. Int. 2012, 45, 713–721. [Google Scholar] [CrossRef]
- Mathew, S.; Verghese, R.; David, A. Antimicrobial activity of Vitamin C demonstrated on uropathogenic Escherichia coli and Klebsiella pneumoniae. J. Curr. Res. Sci. Med. 2017, 3, 88–93. [Google Scholar] [CrossRef]
- Wechtersbach, L.; Cigić, B. Reduction of dehydroascorbic acid at low pH. J. Biochem. Biophys. Methods 2007, 70, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Akın, M.B.; Dasnik, F. Effects of ascorbic acid and glucose oxidase levels on the viability of probiotic bacteria and the physical and sensory characteristics in symbiotic ice-cream. Mljekarstvo 2015, 65, 121–129. [Google Scholar] [CrossRef]
- Brown, D.R.; Southern, L.L. Effect of Citric and Ascorbic Acids on Performance and Intestinal pH of Chicks. Poult. Sci. 1985, 64, 1399–1401. [Google Scholar] [CrossRef] [PubMed]
- Marín-Flamand, E.; Vazquez-Duran, A.; Méndez-Albores, A. Effect of Organic Acid Blends in Drinking Water on Growth Performance, Blood Constituents and Immune Response of Broiler Chickens. J. Poult. Sci. 2014, 51, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.H.; Wang, S.; Jin, J.; Mei, X.T.; Xu, S.B. Dissolution and absorption researches of curcumin in solid dispersions with the polymers PVP. Asian J. Pharmacodyn. Pharmacokinet. 2006, 6, 343–349. [Google Scholar]
- Zhang, Q.; Polyakov, N.E.; Chistyachenko, Y.S.; Khvostov, M.V.; Frolova, T.S.; Tolstikova, T.G.; Dushkin, A.V.; Su, W. Preparation of curcumin self-micelle solid dispersion with enhanced bioavailability and cytotoxic activity by mechanochemistry. Drug Deliv. 2018, 25, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Moghadamtousi, S.Z.; Kadir, H.A.; Hassandarvish, P.; Tajik, H.; Abubakar, S.; Zandi, K. A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin. BioMed Res. Int. 2014, 2014, 186864. [Google Scholar]
- Catanzaro, M.; Corsini, E.; Rosini, M.; Racchi, M.; Lanni, C. Immunomodulators Inspired by Nature: A Review on Curcumin and Echinacea. Molecules 2018, 23, 2778. [Google Scholar] [CrossRef]
- Hernandez-Patlan, D.; Solis-Cruz, B.; Méndez-Albores, A.; Latorre, J.D.; Hernandez-Velasco, X.; Tellez, G.; López-Arellano, R. Comparison of PrestoBlue® and plating method to evaluate antimicrobial activity of ascorbic acid, boric acid and curcumin in an in vitro gastrointestinal model. J. Appl. Microbiol. 2018, 124, 423–430. [Google Scholar] [CrossRef]
- Varmuzova, K.; Matulova, M.E.; Gerzova, L.; Cejkova, D.; Gardan-Salmon, D.; Panhéleux, M.; Robert, F.; Sisak, F.; Havlickova, H.; Rychlik, I. Curcuma and Scutellaria plant extracts protect chickens against inflammation and Salmonella Enteritidis infection. Poult. Sci. 2015, 94, 2049–2058. [Google Scholar] [CrossRef]
- Peterson, C.T.; Vaughn, A.R.; Sharma, V.; Chopra, D.; Mills, P.J.; Peterson, S.N.; Sivamani, R.K. Effects of Turmeric and Curcumin Dietary Supplementation on Human Gut Microbiota: A Double-Blind, Randomized, Placebo-Controlled Pilot Study. J. Evid. Based Integr. Med. 2018, 23. [Google Scholar] [CrossRef] [PubMed]
- Vamanu, E.; Gatea, F.; Sârbu, I.; Pelinescu, D. An In Vitro Study of the Influence of Curcuma longa Extracts on the Microbiota Modulation Process, In Patients with Hypertension. Pharmaceutics 2019, 11, 191. [Google Scholar] [CrossRef] [PubMed]
- Samarasinghe, K.; Wenk, C.; Silva, K.F.S.T.; Gunasekera, J.M.D.M. Turmeric (Curcuma longa) Root Powder and Mannanoligosaccharides as Alternatives to Antibiotics in Broiler Chicken Diets. Asian Australas. J. Anim. Sci. 2003, 16, 1495–1500. [Google Scholar] [CrossRef]
- Alagawany, M.; El-Hack, M.E.A.; Farag, M.R.; Sachan, S.; Karthik, K.; Dhama, K. The use of probiotics as eco-friendly alternatives for antibiotics in poultry nutrition. Environ. Sci. Pollut. Res. 2018, 25, 10611–10618. [Google Scholar] [CrossRef]
- Vieco-Saiz, N.; Belguesmia, Y.; Raspoet, R.; Auclair, E.; Gancel, F.; Kempf, I.; Drider, D. Benefits and Inputs From Lactic Acid Bacteria and Their Bacteriocins as Alternatives to Antibiotic Growth Promoters During Food-Animal Production. Front. Microbiol. 2019, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Brufau, M.T.; Campo-Sabariz, J.; Bou, R.; Carné, S.; Brufau, J.; Vilà, B.; Marqués, A.M.; Guardiola, F.; Ferrer, R.; Martin-Venegas, R. Salmosan, a β-Galactomannan-Rich Product, Protects Epithelial Barrier Function in Caco-2 Cells Infected by Salmonella enterica Serovar Enteritidis. J. Nutr. 2016, 146, 1492–1498. [Google Scholar] [CrossRef]
- Baxter, M.F.A.; Merino-Guzman, R.; Latorre, J.D.; Mahaffey, B.D.; Yang, Y.; Teague, K.D.; Graham, L.E.; Wolfenden, A.D.; Hernandez-Velasco, X.; Bielke, L.R.; et al. Optimizing Fluorescein Isothiocyanate Dextran Measurement As a Biomarker in a 24-h Feed Restriction Model to Induce Gut Permeability in Broiler Chickens. Front. Vet. Sci. 2017, 4, 56. [Google Scholar] [CrossRef]
- Tellez, G.; Latorre, J.D.; Kuttappan, V.A.; Kogut, M.H.; Wolfenden, A.; Hernandez-Velasco, X.; Hargis, B.M.; Bottje, W.G.; Bielke, L.R.; Faulkner, O.B. Utilization of rye as energy source affects bacterial translocation, intestinal viscosity, microbiota composition, and bone mineralization in broiler chickens. Front. Genet. 2014, 5, 339. [Google Scholar] [CrossRef]
- Bereswill, S.; Muñoz, M.; Fischer, A.; Plickert, R.; Haag, L.-M.; Otto, B.; Kühl, A.A.; Loddenkemper, C.; Göbel, U.B.; Heimesaat, M.M. Anti-Inflammatory Effects of Resveratrol, Curcumin and Simvastatin in Acute Small Intestinal Inflammation. PLoS ONE 2010, 5, e15099. [Google Scholar] [CrossRef]
- Wang, J.; Ghosh, S.S.; Ghosh, S. Curcumin improves intestinal barrier function: Modulation of intracellular signaling, and organization of tight junctions. Am. J. Physiol. Physiol. 2017, 312, C438–C445. [Google Scholar] [CrossRef]
- Sheela, R.R.; Babu, U.; Mu, J.; Elankumaran, S.; Bautista, D.A.; Raybourne, R.B.; Heckert, R.A.; Song, W. Immune Responses against Salmonella enterica Serovar Enteritidis Infection in Virally Immunosuppressed Chickens. Clin. Diagn. Lab. Immunol. 2003, 10, 670–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kogut, M.H. Cytokines and prevention of infectious diseases in poultry: A review. Avian Pathol. 2000, 29, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Fasina, Y.O.; Moore, R.W.; Holt, P.S.; Moran, E.T.; Conner, D.E.; McKee, S.R. Intestinal Cytokine Response of Commercial Source Broiler Chicks to Salmonella Typhimurium Infection. Poult. Sci. 2008, 87, 1335–1346. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Biswas, D.; Lingbeck, J.; Koo, O.K.; Ricke, S.C. Enhancement of chicken macrophage cytokine response toSalmonellaTyphimurium when combined with bacteriophage P22. FEMS Microbiol. Lett. 2013, 339, 137–144. [Google Scholar] [CrossRef]
- Patel, S.; McCormick, B.A. Mucosal Inflammatory Response to Salmonella typhimurium Infection. Front. Immunol. 2014, 5, 311. [Google Scholar] [CrossRef]
- Filho, R.A.C.P.; Moura, B.S.; De Almeida, A.M.; Montassier, H.J.; Barrow, P.A.; Júnior, A.B. Humoral and cellular immune response generated by different vaccine programs before and after Salmonella Enteritidis challenge in chickens. Vaccine 2012, 30, 7637–7643. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.C.; Patchva, S.; Koh, W.; Aggarwal, B.B. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin. Exp. Pharmacol. Physiol. 2012, 39, 283–299. [Google Scholar] [CrossRef]
- Ghosh, S.S.; He, H.; Wang, J.; Gehr, T.W.; Ghosh, S. Curcumin-mediated regulation of intestinal barrier function: The mechanism underlying its beneficial effects. Tissue Barriers 2018, 6, e1425085. [Google Scholar] [CrossRef]
- Kong, E.H.; Ma, S.Y.; Jeong, J.Y.; Kim, K.H. Effects of L-ascorbic acid on the production of pro-inflammatory and anti-inflammatory cytokines in C57BL/6 mouse splenocytes. Kosin Med. J. 2015, 30, 41–49. [Google Scholar] [CrossRef] [Green Version]
- El-Senousey, H.K.; Chen, B.; Wang, J.Y.; Atta, A.M.; Mohamed, F.R.; Nie, Q.H. Effects of dietary vitamin C, vitamin E, and alpha-lipoic acid supplementation on the antioxidant defense system and immune-related gene expression in broilers exposed to oxidative stress by dexamethasone. Poult. Sci. 2017, 97, 30–38. [Google Scholar] [CrossRef]
- Break, T.J.; Jun, S.; Indramohan, M.; Carr, K.D.; Sieve, A.N.; Dory, L.; Berg, R.E. Extracellular superoxide dismutase inhibits innate immune responses and clearance of an intracellular bacterial infection. J. Immunol. 2012, 188, 3342–3350. [Google Scholar] [CrossRef] [PubMed]
- Ismail, I.; Al-Busadah, K.; El-Bahr, S. Oxidative Stress Biomarkers and Biochemical Profile in Broilers Chicken Fed Zinc Bacitracin and Ascorbic Acid under Hot Climate. Am. J. Biochem. Mol. Biol. 2013, 3, 202–214. [Google Scholar] [Green Version]
- Al-Rubaei, Z.M.; Mohammad, T.U.; Ali, L.K. Effects of local curcumin on oxidative stress and total antioxidant capacity in vivo study. Pak. J. Biol. Sci. 2014, 17, 1237–1241. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; He, Y.; Arowolo, M.A.; Wu, S.; He, J. Polyphenols as Potential Attenuators of Heat Stress in Poultry Production. Antioxidants 2019, 8, 67. [Google Scholar] [CrossRef]
- Wigley, P. Salmonella enterica in the Chicken: How it has Helped Our Understanding of Immunology in a Non-Biomedical Model Species. Front. Immunol. 2014, 5, 482. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Poultry, 9th ed.; National Academy Press: Washington, DC, USA, 1994; pp. 19–34. [Google Scholar]
- Cobb-Vantress, I. Cobb 500 Broiler Performance and Nutrition Supplement. 2015. Available online: https://www.cobb-vantress.com/assets/Cobb-Files/product-guides/bdc20a5443/70dec630-0abf-11e9-9c88-c51e407c53ab.pdf (accessed on 9 November 2019).
- Vicuña, E.A.; Kuttappan, V.A.; Galarza-Seeber, R.; Latorre, J.D.; Faulkner, O.B.; Hargis, B.M.; Tellez, G.; Bielke, L.R. Effect of dexamethasone in feed on intestinal permeability, differential white blood cell counts, and immune organs in broiler chicks. Poult. Sci. 2015, 94, 2075–2080. [Google Scholar] [CrossRef]
- Vicuña, E.A.; Kuttappan, V.A.; Tellez, G.; Hernandez-Velasco, X.; Seeber-Galarza, R.; Latorre, J.D.; Faulkner, O.B.; Wolfenden, A.D.; Hargis, B.M.; Bielke, L.R. Dose titration of FITC-D for optimal measurement of enteric inflammation in broiler chicks. Poult. Sci. 2015, 94, 1353–1359. [Google Scholar] [CrossRef]
- Merino-Guzmán, R.; Latorre, J.D.; Delgado, R.; Hernandez-Velasco, X.; Wolfenden, A.D.; Teague, K.D.; Graham, L.E.; Mahaffey, B.D.; Baxter, M.F.A.; Hargis, B.M.; et al. Comparison of total immunoglobulin A levels in different samples in Leghorn and broiler chickens. Asian Pac. J. Trop. Biomed. 2017, 7, 116–120. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS/Share: 9.4 User’s Guide, 2nd ed.; SAS Documentation: Cary, NC, USA, 2002. [Google Scholar]
- Zar, J.H. Biostatistical Analysis, 2nd ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1984; p. 718. [Google Scholar]
Treatments | Crop Log10 cfu/g | Crop + / - (%) 3 | CT Log10 cfu/g | CT + / - (%) |
---|---|---|---|---|
Trial 1 | ||||
Ctrl | 2.68 ± 0.47 ab | 9/12 (75%) | 4.01 ± 0.29 a | 12/12 (100%) |
AA | 1.48 ± 0.53 b | 5/12 (42%) | 3.69 ± 0.17 a | 12/12 (100%) |
SD-CU | 3.08 ± 0.57 a | 9/12 (75%) | 2.42 ± 0.54 b | 8/12 (67%) * |
Trial 2 | ||||
Ctrl | 2.69 ± 0.48 a | 9/12 (75%) | 3.94 ± 0.22 a | 12/12 (100%) |
AA | 1.49 ± 0.54 b | 5/12 (42%) | 3.80 ± 0.28 ab | 12/12 (100%) |
SD-CUR | 3.19 ± 0.47 a | 9/12 (75%) | 2.34 ± 0.50 b | 8/12 (67%) * |
Treatments | TAB Log10 cfu/g | FITC-d (μg/mL) | SOD (U/mL) | IgA (μg/mL) |
---|---|---|---|---|
Ctrl | 7.96 ± 0.10 ab | 0.591 ± 0.055 a | 3.58 ± 0.31 b | 14.21 ± 0.83 a |
AA | 7.92 ± 0.11 b | 0.533 ± 0.034 ab | 4.50 ± 0.35 a | 11.51 ± 0.71 b |
SD-CUR | 8.27 ± 0.13 a | 0.432 ± 0.037 b | 4.48 ± 0.20 a | 11.20 ± 0.53 b |
Treatments | Crop Log10 cfu/g | Crop + / − (%) | CT Log10 cfu/g | CT + / − (%) |
---|---|---|---|---|
3-d post—S. Enteritidis Challenge | ||||
Ctrl | 3.18 ± 0.46 a | 10/12 (83%) | 6.44 ± 0.15 a | 12/12 (100%) |
AA | 1.13 ± 0.48 b | 4/12 (33%) * | 2.90 ± 0.91 b | 6/12 (50%) ** |
SD-CUR | 2.16 ± 0.46 ab | 8/12 (67%) | 4.85 ± 0.86 ab | 9/12 (75%) |
10-d post—S. Enteritidis Challenge | ||||
Ctrl | 2.93 ± 0.65 a | 7/12 (58%) | 6.61 ± 0.21 a | 12/12 (100%) |
AA | 1.26± 0.54 b | 4/12 (33%) | 1.89 ± 0.81 b | 4/12 (33%) φ |
SD-CUR | 0.97 ± 0.51 b | 3/12 (25%) | 4.81 ± 0.85 ab | 9/12 (75%) |
Treatments | FITC-d (μg/mL) | SOD (U/mL) | IgA (μg/mL) |
---|---|---|---|
Ctrl | 0.700 ± 0.020 a | 10.34 ± 0.67 a | 14.34 ± 2.81 a |
AA | 0.457 ± 0.039 b | 10.22 ± 0.72 a | 9.18 ± 2.95 b |
SD-CUR | 0.489 ± 0.020 b | 9.72 ± 0.82 a | 11.26 ± 3.39 ab |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernandez-Patlan, D.; Solis-Cruz, B.; Pontin, K.P.; Latorre, J.D.; Hernandez-Velasco, X.; Merino-Guzman, R.; Mendez-Albores, A.; Hargis, B.M.; Lopez-Arellano, R.; Tellez-Isaias, G. Evaluation of Ascorbic Acid or Curcumin Formulated in a Solid Dispersion on Salmonella Enteritidis Infection and Intestinal Integrity in Broiler Chickens. Pathogens 2019, 8, 229. https://doi.org/10.3390/pathogens8040229
Hernandez-Patlan D, Solis-Cruz B, Pontin KP, Latorre JD, Hernandez-Velasco X, Merino-Guzman R, Mendez-Albores A, Hargis BM, Lopez-Arellano R, Tellez-Isaias G. Evaluation of Ascorbic Acid or Curcumin Formulated in a Solid Dispersion on Salmonella Enteritidis Infection and Intestinal Integrity in Broiler Chickens. Pathogens. 2019; 8(4):229. https://doi.org/10.3390/pathogens8040229
Chicago/Turabian StyleHernandez-Patlan, Daniel, Bruno Solis-Cruz, Karine P. Pontin, Juan D. Latorre, Xochitl Hernandez-Velasco, Ruben Merino-Guzman, Abraham Mendez-Albores, Billy M. Hargis, Raquel Lopez-Arellano, and Guillermo Tellez-Isaias. 2019. "Evaluation of Ascorbic Acid or Curcumin Formulated in a Solid Dispersion on Salmonella Enteritidis Infection and Intestinal Integrity in Broiler Chickens" Pathogens 8, no. 4: 229. https://doi.org/10.3390/pathogens8040229
APA StyleHernandez-Patlan, D., Solis-Cruz, B., Pontin, K. P., Latorre, J. D., Hernandez-Velasco, X., Merino-Guzman, R., Mendez-Albores, A., Hargis, B. M., Lopez-Arellano, R., & Tellez-Isaias, G. (2019). Evaluation of Ascorbic Acid or Curcumin Formulated in a Solid Dispersion on Salmonella Enteritidis Infection and Intestinal Integrity in Broiler Chickens. Pathogens, 8(4), 229. https://doi.org/10.3390/pathogens8040229