A Rational Explanation of Limited FMD Vaccine Uptake in Endemic Regions
Abstract
1. Introduction
2. Materials and Methods
Vaccination Game Setting
3. Results
3.1. Strategies and Payoffs
3.2. Decision Analysis
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Brewer, N.T.; Chapman, G.B.; Gibbons, F.X.; Gerrard, M.; McCaul, K.D.; Weinstein, N.D. Meta-analysis of the relationship between risk perception and health behavior: The example of vaccination. Health Psychol. 2007, 26, 136. [Google Scholar] [CrossRef] [PubMed]
- Barclay, V.C.; Smieszek, T.; He, J.; Cao, G.; Rainey, J.J.; Gao, H.; Uzicanin, A.; Salathe, M. Positive Network Assortativity of Influenza Vaccination at a High School: Implications for Outbreak Risk and Herd Immunity. PLoS ONE 2014, 9, e87042. [Google Scholar] [CrossRef] [PubMed]
- Schmid, P.; Rauber, D.; Betsch, C.; Lidolt, G.; Denker, M.L. Barriers of influenza vaccination intention and behavior—A systematic review of influenza vaccine hesitancy, 2005–2016. PLoS ONE 2017, 12, 2005–2016. [Google Scholar] [CrossRef] [PubMed]
- Mutua, E.; De Haan, N.; Tumusiime, D.; Jost, C.; Bett, B. A Qualitative Study on Gendered Barriers to Livestock Vaccine Uptake in Kenya and Uganda and Their Implications on Rift Valley Fever Control. Vaccines 2019, 7, 86. [Google Scholar] [CrossRef]
- Barasa, M.; Catley, A.; Machuchu, D.; Laqua, H.; Puot, E.; Kot, D.T.; Ikiror, D. Foot-and-Mouth Disease Vaccination in South Sudan: Benefit-Cost Analysis and Livelihoods Impact. Transbound. Emerg. Dis. 2008, 55, 339–351. [Google Scholar] [CrossRef]
- Böhm, R.; Betsch, C.; Korn, L. Selfish-rational non-vaccination: Experimental evidence from an interactive vaccination game. J. Econ. Behav. Organ. 2016, 131, 183–195. [Google Scholar] [CrossRef]
- Knight-Jones, T.J.D.; Rushton, J. The economic impacts of foot and mouth disease—What are they, how big are they and where do they occur? Prev. Vet. Med. 2013, 112, 162–173. [Google Scholar]
- Knight-Jones, T.J.D.; McLaws, M.; Rushton, J. Foot-and-mouth disease impact on smallholders—What do we know, what don’t we know and how can we find out more? Transbound. Emerg. Dis. 2016, 64, 1079–1094. [Google Scholar] [CrossRef]
- Marsh, T.L.; Yoder, J.; Deboch, T.; McElwain, T.F.; Palmer, G.H. Livestock vaccinations translate into increased human capital and school attendance by girls. Sci. Adv. 2016, 2, e1601410. [Google Scholar] [CrossRef]
- Otte, J.; Costales, A.; Dijkman, J.; Pica-Ciamarra, U.; Robinson, T.; Ahuja, V.; Ly, C.; Roland-Holst, D. Livestock sector for poverty Reduction: An Economic and Policy Perspective—Livestock’s Many Virtues; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012; 161p. [Google Scholar]
- Naranjo, J.; Cosivi, O. Elimination of foot-and-mouth disease in South America: Lessons and challenges. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120381. [Google Scholar] [CrossRef]
- Casey-Bryars, M.; Reeve, R.; Bastola, U.; Knowles, N.J.; Auty, H.; Bachanek-Bankowska, K.; Fowler, V.L.; Fyumagwa, R.; Kazwala, R.; Kibona, T.; et al. Waves of endemic foot-and-mouth disease in eastern Africa suggest feasibility of proactive vaccination approaches. Nat. Ecol. Evol. 2018, 2, 1449–1457. [Google Scholar] [CrossRef]
- Halliday, J.E.; Hampson, K.; Hanley, N.; Lembo, T.; Sharp, J.P.; Haydon, D.T.; Cleaveland, S. Driving improvements in emerging disease surveillance through locally relevant capacity strengthening. Science 2017, 357, 146–148. [Google Scholar] [CrossRef]
- Parida, S. Vaccination against foot-and-mouth disease virus: Strategies and effectiveness. Expert Rev. Vaccines 2009, 8, 347–365. [Google Scholar] [CrossRef] [PubMed]
- Bruckner, G.; Vosloo, W.; Du Plessis, B.; Kloeck, P.; Connoway, F.; Ekron, M.; Weaver, D.; Dickason, C.; Schreuder, F.; Marais, T.; et al. Foot and mouth disease: The experience of South Africa. Rev. Sci. Tech. l’OIE 2002, 21, 751–764. [Google Scholar] [CrossRef] [PubMed]
- Jemberu, W.T.; Mourits, M.C.M.; Hogeveen, H. Farmers’ Intentions to Implement Foot and Mouth Disease Control Measures in Ethiopia. PLoS ONE 2015, 10, e0138363. [Google Scholar] [CrossRef] [PubMed]
- Railey, A.F.; Lembo, T.; Palmer, G.H.; Shirima, G.M.; Marsh, T.L. Spatial and temporal risk as drivers for adoption of foot and mouth disease vaccination. Vaccine 2018, 36, 5077–5083. [Google Scholar] [CrossRef]
- Chapman, G.B.; Li, M.; Vietri, J.; Ibuka, Y.; Thomas, D.; Yoon, H.; Galvani, A.P. Using Game Theory to Examine Incentives in Influenza Vaccination Behavior. Psychol. Sci. 2012, 23, 1008–1015. [Google Scholar] [CrossRef]
- Reluga, T.C. Game Theory of Social Distancing in Response to an Epidemic. PLoS Comput. Biol. 2010, 6, e1000793. [Google Scholar] [CrossRef] [PubMed]
- Reluga, T.C.; Bauch, C.T.; Galvani, A.P. Evolving public perceptions and stability in vaccine uptake. Math. Biosci. 2006, 204, 185–198. [Google Scholar] [CrossRef]
- Ibuka, Y.; Li, M.; Vietri, J.; Chapman, G.B.; Galvani, A.P. Free-Riding Behavior in Vaccination Decisions: An Experimental Study. PLoS ONE 2014, 9, e87164. [Google Scholar] [CrossRef]
- Galvani, A.P.; Reluga, T.C.; Chapman, G.B. Long-standing influenza vaccination policy is in accord with individual self-interest but not with the utilitarian optimum. Proc. Natl. Acad. Sci. USA 2007, 104, 5692–5697. [Google Scholar] [CrossRef] [PubMed]
- Bauch, C.T.; Earn, D.J.D. Vaccination and the theory of games. Proc. Natl. Acad. Sci. USA 2004, 101, 13391–13394. [Google Scholar] [CrossRef] [PubMed]
- Jemberu, W.T.; Mourits, M.; Rushton, J.; Hogeveen, H. Cost-benefit analysis of foot and mouth disease control in Ethiopia. Prev. Vet. Med. 2016, 132, 67–82. [Google Scholar] [CrossRef] [PubMed]
- Osterholm, M.T.; Kelley, N.S.; Sommer, A.; A Belongia, E. Efficacy and effectiveness of influenza vaccines: A systematic review and meta-analysis. Lancet Infect. Dis. 2012, 12, 36–44. [Google Scholar] [CrossRef]
- Nowak, G.J.; Shen, A.K.; Schwartz, J.L. Using campaigns to improve perceptions of the value of adult vaccination in the United States: Health communication considerations and insights. Vaccine 2017, 35, 5543–5550. [Google Scholar] [CrossRef] [PubMed]
- Hennessy, D.A.; Wolf, C.A. Asymmetric Information, Externalities and Incentives in Animal Disease Prevention and Control. J. Agric. Econ. 2015, 69, 226–242. [Google Scholar] [CrossRef]
- Paules, C.I.; Sullivan, S.G.; Subbarao, K.; Fauci, A.S. Chasing Seasonal Influenza—The Need for a Universal Influenza Vaccine. N. Engl. J. Med. 2018, 378, 7–9. [Google Scholar] [CrossRef] [PubMed]
- Nouvellet, P.; Garske, T.; Mills, H.L.; Nedjati-Gilani, G.; Hinsley, W.; Blake, I.M.; Van Kerkhove, M.D.; Cori, A.; Dorigatti, I.; Jombart, T.; et al. The role of rapid diagnostics in managing Ebola epidemics. Nature 2015, 528, S109–S116. [Google Scholar] [CrossRef]
- Perry, B.D. The control of East Coast fever of cattle by live parasite vaccination: A science-to-impact narrative. One Health 2016, 2, 103–114. [Google Scholar] [CrossRef]
- Kairu-Wanyoike, S.W.; Kaitibie, S.; Heffernan, C.; Taylor, N.M.; Gitau, G.K.; Kiara, H.; McKeever, D. Willingness to pay for contagious bovine pleuropneumonia vaccination in Narok South District of Kenya. Prev. Veter Med. 2014, 115, 130–142. [Google Scholar] [CrossRef]
- Mariner, J.C.; House, J.A.; Mebus, C.A.; Sollod, A.E.; Chibeu, D.; Jones, B.A.; Roeder, P.L.; Admassu, B.; van’t Klooster, G.G. Rinderpest eradication: Appropriate technology and social Innovations. Science 2012, 337, 1309–1312. [Google Scholar] [CrossRef] [PubMed]
- Alarcon, P.; Wieland, B.; Mateus, A.L.; Dewberry, C. Pig farmers’ perceptions, attitudes, influences and management of information in the decision-making process for disease control. Prev. Veter Med. 2014, 116, 223–242. [Google Scholar] [CrossRef] [PubMed]
- Larson, H.J. Politics and public trust shape vaccine risk perceptions. Nat. Hum. Behav. 2018, 2, 316. [Google Scholar] [CrossRef] [PubMed]
- GALVmed to Manage Multimillion-Dollar AgResults Foot and Mouth Disease (FMD) Challenge Project—GALVmed. Available online: https://www.galvmed.org/news/galvmed-to-manage-multimillion-dollar-agresults-foot-and-mouth-disease-fmd-challenge-project/ (accessed on 5 September 2019).
Individual/Others | Vaccinate | Do not Vaccinate |
---|---|---|
Vaccinate | (−3, −3) | (−5, 0) |
Do not vaccinate | (0, −5) | (−1, −1) |
Individual/Others | Vaccinate | Do not Vaccinate |
---|---|---|
Vaccinate | (−5, −5) | (−5, −10) |
Do not vaccinate | (−10, −5) | (−10, −10) |
Individual/Others | Vaccinate | Do not Vaccinate |
---|---|---|
Vaccinate | (−15, −15) | (−15, −5) |
Do not vaccinate | (−5, −15) | (−5, −5) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Railey, A.F.; Marsh, T.L. A Rational Explanation of Limited FMD Vaccine Uptake in Endemic Regions. Pathogens 2019, 8, 181. https://doi.org/10.3390/pathogens8040181
Railey AF, Marsh TL. A Rational Explanation of Limited FMD Vaccine Uptake in Endemic Regions. Pathogens. 2019; 8(4):181. https://doi.org/10.3390/pathogens8040181
Chicago/Turabian StyleRailey, Ashley F., and Thomas L. Marsh. 2019. "A Rational Explanation of Limited FMD Vaccine Uptake in Endemic Regions" Pathogens 8, no. 4: 181. https://doi.org/10.3390/pathogens8040181
APA StyleRailey, A. F., & Marsh, T. L. (2019). A Rational Explanation of Limited FMD Vaccine Uptake in Endemic Regions. Pathogens, 8(4), 181. https://doi.org/10.3390/pathogens8040181