Effect of Sublethal Concentrations of Zinc Oxide Nanoparticles on Bacillus cereus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain
2.2. Determination of Growth Parameters
2.3. Bacterial Cultures in Liquid Medium with ZnONPs at Concentrations below the MIC
2.4. Evaluation of Sporulation Rate
2.5. Determination of Superoxide Radicals
2.6. Crystal Violet Assay to Determine Biofilm-Forming Ability
2.7. Ability to Decompose (Decolourize) Evans Blue Dye
2.8. Evaluation of the Synergistic Effect of ZnO Nanoparticles and Selected Phenolic Compounds on B. cereus by the Well Method
3. Results
3.1. Measure of Growth Parameters of B. cereus following Incubation with ZnONPs
3.2. Oxidative Stress Measured by the NBT Assay
3.3. Biofilm Formation
3.4. Evans Blue Decolouration
3.5. Combined Activity of ZnONPs and Phenolic Compounds against B. cereus
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duport, C.; Jobin, M.; Schmitt, P. Adaptation in Bacillus cereus: From stress to disease. Front. Microbiol. 2016, 7, 1550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitt, T.L.; McClure, J.; Parker, M.D.; Amézquita, A.; McClure, P.J. Bacillus cereus in personal care products: Risk to consumers. Int. J. Cosmet. Sci. 2015, 37, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Vilain, S.; Luo, Y.; Hildreth, M.B.; Brözel, V.S. Analysis of the life cycle of the soil saprophyte Bacillus cereus in liquid soil extract and in soil. Appl. Environ. Microbiol. 2006, 72, 4970–4977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tirloni, E.; Stella, S.; Celandroni, F.; Mazzantini, D.; Bernardi, C.; Ghelardi, E. Bacillus cereus in dairy products and production plants. Foods 2022, 11, 2572. [Google Scholar] [CrossRef]
- Ribeiro, N.D.Q.; Souza, T.P.; Costa, L.M.A.S.; de Castro, C.P.; Dias, E.S. Microbial additives in the composting process. Cienc. Agrotecnol. 2017, 4, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Arefian, M.; Tahmourespour, A.; Zia, M. Polycarbonate biodegradation by newly isolated Bacillus strains. Arch. Environ. Prot. 2020, 46, 14–20. [Google Scholar]
- Ehling-Schulz, M.; Frenzel, E.; Gohar, M. Food-bacteria interplay: Pathometabolism of emetic Bacillus cereus. Front. Microbiol. 2015, 6, 704. [Google Scholar] [CrossRef] [Green Version]
- Maćkiw, E.; Kowalska, J.; Stasiak, M.; Kucharek, K. Current microbiological hazards—Bacillus cereus group. Przem. Spoż. 2019, 73, 36–40. [Google Scholar]
- Hariram, U.; Labbé, R.G. Growth and inhibition by spices of growth from spores of enterotoxigenic Bacillus cereus in cooked rice. Food Control 2016, 64, 60–64. [Google Scholar] [CrossRef] [Green Version]
- Tewari, A.; Abdullah, S. Bacillus cereus food poisoning: International and Indian perspective. J. Food Sci. Technol. 2015, 52, 250–251. [Google Scholar] [CrossRef] [Green Version]
- Mostafa, N.F.; Elkenany, R.M.; Younis, G. Characterization of Bacillus cereus isolated from contaminated foods with sequencing of virulence genes in Egypt. Braz. J. Biol. 2022, 84, e257516. [Google Scholar] [CrossRef]
- Rodrigo, D.; Rosell, C.M.; Martinez, A. Risk of Bacillus cereus in relation to rice and derivatives. Foods 2021, 10, 302. [Google Scholar] [CrossRef]
- Nanteza, H.; Dewanti-Hariyadi, R.; Nurjanah, S. The occurrence of Bacillus cereus in white pepper from Bogor, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2022, 1097, 012030. [Google Scholar] [CrossRef]
- Kindle, P.; Etter, D.; Stephan, R.; Johler, S. Population structure andtoxin gene profiles of Bacillus cereus sensu lato isolated from flour products. FEMS Microbiol. Lett. 2019, 366, fnz240. [Google Scholar] [CrossRef]
- Park, K.M.; Kim, A.Y.; Kim, H.J.; Cho, Y.S.; Koo, M. Prevalence and characterization of toxigenic Bacillus cereus group isolated from low-moisture food products. Food Sci. Biotechnol. 2022, 31, 1615–1629. [Google Scholar] [CrossRef]
- Carter, L.; Huang, M.-C.J.; Han, K.; Gangiredla, J.; Yee, J.; Chase, H.R.; Negrete, F.; Tall, B.D. Characterization and genetic diversity of Bacillus cereus strains isolated from baby wipes. Microorganisms 2022, 10, 1779. [Google Scholar] [CrossRef]
- Yossa, N.; Arce, G.; Smiley, J.; Jo Huang, M.C.; Yin, L.; Bell, R.; Hammack, T. Survival and detection of Bacillus cereus in the presence of Escherichia coli, Salmonella enteritidis, Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans after rechallenge in make-up removers. Int. J. Cosmet. Sci. 2018, 40, 67–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esmkhani, M.; Shams, S. Cutaneous infection due to Bacillus cereus: A case report. BMC Infect. Dis. 2022, 22, 393. [Google Scholar] [CrossRef]
- Michelotti, F.; Bodansky, H.J. Bacillus cereus causing widespread necrotising skin infection in a diabetic person. Pract. Diabetes 2015, 32, 169–170. [Google Scholar] [CrossRef]
- Ramaro, N.; Sanchis, V. The pore-forming hameolysins of Bacillus cereus: A revive. Toxins 2013, 5, 1119–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehling-Schulz, M.; Lereclus, D.; Koehler, T.M. The Bacillus cereus group: Bacillus species with pathogenic potential. Microbiol. Spectr. 2019, 7, 3–7. [Google Scholar] [CrossRef]
- Rajkovic, A.; Uyttendaele, M.; Dierick, K.; Samapundo, S.; Botteldoorn, N.; Mahillon, J.; Heyndrickx, M. Risk profile of Bacillus cereus and public health implications. In SPORE2009: Spore Forming Bacteria in Food; Sohier, D., Leguerinel, I., Eds.; Editions Anaximandre: Quimper, France, 2009; pp. 118–121. [Google Scholar]
- Peng, J.S.; Tsai, W.C.; Chou, C.C. Inactivation and removal of Bacillus cereus by sanitizer and detergent. Int. J. Food Microbiol. 2002, 77, 11–18. [Google Scholar] [CrossRef]
- Fink, R.; Oder, M.; Stražar, E.; Filip, S. Efficacy of cleaning methods for the removal of Bacillus cereus biofilm from polyurethane conveyor belts in bakeries. Food Control 2017, 80, 267–272. [Google Scholar] [CrossRef]
- Valero, M.; Salmeron, M.C. Antibacterial activity of 11 essential oils against Bacillus cereus in tyndallized carrot broth. Int. J. Food Microbiol. 2003, 85, 73–81. [Google Scholar] [CrossRef]
- Lanciotti, R.; Sinigaglia, M.; Gardini, F.; Vannini, L.; Guerzoni, M.E. Growth/no growth interfaces of Bacillus cereus, staphylococcus aureus and salmonella enteritidis in model systems based on water activity, ph, temperature and ethanol concentration. Food Microbiol. 2001, 18, 659–668. [Google Scholar] [CrossRef]
- Lu, P.-J.; Huang, S.-C.; Chen, Y.-P.; Chiueh, L.-C.; Shih, D.Y.-C. Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics. J. Food Drug Anal. 2015, 23, 587–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subhan, M.A.; Neogi, N.; Choudhury, K.P. Industrial manufacturing applications of zinc oxide nanomaterials: A comprehensive study. Nanomanufacturing 2022, 2, 265–291. [Google Scholar] [CrossRef]
- Espitia, P.J.P.; Soares, N.F.F.; Coimbra, J.S.R. Zinc oxide nanoparticles: Synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol. 2012, 5, 1447–1464. [Google Scholar] [CrossRef]
- Yousef, J.M.; Danial, E.N. In vitro antibacterial activity and minimum inhibitory concentration of zinc oxide and nano-particle zinc oxide against pathogenic strains. J. Health Sci. 2012, 2, 38–42. [Google Scholar] [CrossRef] [Green Version]
- Pasquet, J.; Chevalier, Y.; Couval, E.; Bouvier, D.; Noizet, G.; Morlière, C.; Bolzinger, M.A. Antimicrobial activity of zinc oxide particles on five micro-organisms of the Challenge Tests related to their physicochemical properties. Int. J. Pharm. 2014, 460, 92–100. [Google Scholar] [CrossRef]
- Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef]
- Babele, P.K.; Thakre, P.K.; Kumawat, R.; Tomar, R.S. Zinc oxide nanoparticles induce toxicity by affecting cell wall integrity pathway, mitochondrial function and lipid homeostasis in Saccharomyces cerevisiae. Chemosphere 2018, 213, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Sardella, D.; Gatt, R.; Valdramidis, V.P. Assessing the efficacy of zinc oxide nanoparticles against Penicillium expansum by automated turbidimetric analysis. Mycology 2018, 9, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Moustafa, H.; Darwish, N.A.; Youssef, A.M. Rational formulations of sustainable polyurethane/chitin/rosin composites reinforced with ZnO-doped-SiO2 nanoparticles for green packaging applications. Food Chem. 2022, 371, 131193. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Menzies, N.W.; Lombi, E.; McKenna, B.A.; Johannessen, B.; Glover, C.J.; Kappen, P.; Kopittke, P.M. Fate of ZnO nanoparticles 640 in soils and cowpea (Vigna unguiculata). Environ. Sci. Technol. 2013, 47, 13822–13830. [Google Scholar] [CrossRef] [Green Version]
- Chavan, S.; Nadanathangam, V. Effects of nanoparticles on plant growth-promoting bacteria in indian agricultural soil. Agronomy 2019, 9, 140. [Google Scholar] [CrossRef] [Green Version]
- Oktari, A.; Supriatin, Y.; Kamal, M.; Syafrullah, H. The bacterial endospore stain on Schaeffer Fulton using variation of methylene blue solution. J. Phys. Conf. Ser. 2017, 812, 012066. [Google Scholar] [CrossRef] [Green Version]
- Paździoch-Czochra, M.; Malarczyk, E.; Sielewiesiuk, J. Relationship of demethylation processes to veratric acid concentration and cell density in cultures of Rhodococcus erythropolis. Cell Biol. Int. 2003, 27, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Peng, D.; Walker, S.L.; Cao, B.; Gao, C.-H.; Huang, Q.; Cai, P. Bacillus subtilis biofilm development in the presence of soil clay minerals and iron oxides. NPJ Biofilms Microbiomes 2017, 4, 4. [Google Scholar] [CrossRef] [PubMed]
- Naher, J.; Chowdhury, S.A.; Mamun, A.A.; Mahmud, N.; Shumi, W.; Khan, R.A. A comparative study on the biofilm formation of Enterobacter agglomerans and Serretia rubideae in different environmental parameter under single culture condition. Open J. Med. Microbiol. 2014, 4, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Wang, Q.; Luo, Q.; Chen, Y.; Liao, X.-R.; Guan, Z.B. Secretory expression and optimization of Bacillus pumilus CotA-laccase mutant GWLF in Pichia pastoris and its mechanism on Evans blue degradation. Process Biochem. 2019, 78, 33–41. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Z.; Liu, D.; Gao, Z. Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res. Let. 2017, 12, 143. [Google Scholar] [CrossRef] [Green Version]
- Pietruk, K.; Piątkowska, M.; Olejnik, M. Electrochemical reduction of azo dyes mimicking their biotransformation to more toxic products. J. Vet. Res. 2019, 63, 433–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arakha, M.; Saleem, M.; Mallick, S. The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Sci. Rep. 2015, 5, 9578–9587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azam, A.; Ahmed, A.; Oves, M.; Khan, M.; Habib, S.; Memic, A. Antimicrobial activity of metal oxide nanoparticles against gram-positive and gram-negative bacteria: A comparative study. Int. J. Nanomed. 2012, 7, 6003–6009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Punjabi, K.; Mehta, S.; Chavan, R.; Chitalia, V.; Deogharkar, D.; Deshpande, S. Efficiency of biosynthesized silver and zinc nanoparticles against multi-drug resistant pathogens. Front. Microbiol. 2018, 9, 2207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobrucka, R.; Długaszewska, J. Biosynthesis and antibacterial activity of ZnO nanoparticles using trifolium pratense flower extract. Saudi J. Biol. Sci. 2016, 23, 517–523. [Google Scholar] [CrossRef] [Green Version]
- Hussain, A.; Oves, M.; Alajmi, M.F.; Hussain, I.; Amir, S.; Ahmed, J.; Rehman, M.T.; El-Seedi, H.R.; Ali, I. Biogenesis of ZnO nanoparticles using pandanus odorifer leaf extract: Anticancer and antimicrobial activities. RSC Adv. 2019, 9, 15357–15369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luna, V.A.; King, D.S.; Gulledge, J.; Cannons, A.C.; Amuso, P.T.; Cattani, J. Susceptibility of Bacillus anthracis, Bacillus cereus, Bacillus mycoides, Bacillus pseudomycoides and Bacillus thuringiensis to 24 antimicrobials using Sensititre automated microbial dilution and E-test agar gradient diffusion methods. J. Antimicrob. Chemother. 2007, 60, 555–567. [Google Scholar] [CrossRef] [Green Version]
- Shahverdi, A.R.; Fakhimi, A.; Shahverdi, H.R.; Minaian, S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 2007, 3, 168–171. [Google Scholar] [CrossRef]
- Kaur, P.; Nene, A.G.; Sharma, D.; Somani, P.R.; Tuli, H.S. Synergistic effect of copper nanoparticles and antibiotics to enhance antibacterial potential. Bio Mater. Technol. 2019, 1, 33–47. [Google Scholar]
- Banoee, M.; Seif, S.; Nazari, Z.E.; Jafari-Fesharaki, P.; Shahverdi, H.R.; Moballegh, A.; Shahverdi, A.R. ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli. J. Biomed. Mater. Res. 2010, 93, 557–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, N.; Jandaik, S.; Kumar, S. Synergistic activity of doped zinc oxide nanoparticles with antibiotics: Ciprofloxacin, ampicillin, fluconazole and amphotericin B against pathogenic microorganisms. An. Acad. Bras. Ciênc. 2016, 88, 1689–1698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panzella, L. Natural phenolic compounds for health, food and cosmetic applications. Antioxidants 2020, 9, 427. [Google Scholar] [CrossRef] [PubMed]
- Bouarab-Chibane, L.; Forquet, V.; Lantéri, P.; Clément, Y.; Léonard-Akkari, L.; Oulahal, N.; Bordes, C. Antibacterial properties of polyphenols: Characterization and QSAR (Quantitative structure–activity relationship) models. Front. Microbiol. 2019, 10, 829. [Google Scholar] [CrossRef] [Green Version]
- Cichewicz, R.H.; Kouzi, S.A. Biotransformation of resveratrol to piceid by Bacillus cereus. J. Nat. Prod. 1998, 61, 1313–1314. [Google Scholar] [CrossRef]
- Lee, Y.J.; Kim, B.G.; Park, Y.H.; Lim, Y.H.; Hur, H.G.; Ahn, J.H. Biotransformation of flavonoids with O-methyltransferase from Bacillus cereus. World J. Microbiol. Biotechnol. 2006, 16, 1090–1096. [Google Scholar]
- Walsh, S.; Maillard, J.-Y.; Russell, A.; Catrenich, C.; Charbonneau, D.; Bartolo, R. Activity and mechanism of action of selected biocidal agents on gram -positive and -negative bacteria. J. Appl. Microbiol. 2003, 94, 240–247. [Google Scholar] [CrossRef]
- Su, R.; Tiruvalam, R.; He, Q.; Dimitratos, N.; Kesavan, L.; Hammond, C.; Besenbacher, F. Promotion of phenol photodecomposition over TiO2 using Au, Pd, and Au–Pd nanoparticles. ACS Nano 2012, 6, 6284–6292. [Google Scholar] [CrossRef]
- Leareng, S.K.; Ubomba-Jaswa, E.; Musee, N. Zinc oxide and iron oxide engineered nanoparticles toxicity on Bacillus subtilis in river water systems. Environ. Sci. Nano 2019, 7, 172–185. [Google Scholar] [CrossRef]
- Amini, S.M.; Akbari, A. Metal nanoparticles synthesis through natural phenolic acids. IET Nanobiotechnol. 2019, 13, 771–777. [Google Scholar] [CrossRef] [PubMed]
- Premanathan, M.; Karthikeyan, K.; Jeyasubramanian, K.; Manivannan, G. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine 2011, 7, 184–192. [Google Scholar] [CrossRef]
- Kim, I.; Viswanathan, K.; Kasi, G.; Thanakkasaranee, S.; Sadeghi, K.; Seo, J. ZnO nanostructures in active antibacterial food packaging: Preparation methods, antimicrobial mechanisms, safety issues, future prospects, and challenges. Food Rev. Int. 2022, 38, 537–565. [Google Scholar] [CrossRef] [Green Version]
- Ansari, F.A.; Jafri, H.; Ahmad, I.; Abulreesh, H.H. Factors affecting biofilm formation in in vitro and in the rhizosphere. In Biofilms in Plant and Soil Health; Wiley: Hoboken, NJ, USA, 2017; pp. 275–290. [Google Scholar]
- Arciola, C.R.; Campoccia, D.; Montanaro, L. Implant infections: Adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 2018, 16, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Rajput, N.S.; Bankar, A. Bio-inspired gold nanoparticles synthesis and their anti-biofilm efficacy. J. Pharm. Investig. 2017, 47, 521–530. [Google Scholar] [CrossRef]
- Namasivayam, S.K.R.; Christo, B.B.; Arasu, S.M.K.; Kumar, K.A.M.; Deepak, K. Antibiofilm effect of biogenic silver nanoparticles coated medical devices against biofilm of clinical isolate of Staphylococcus aureus. Glob. J. Med. Res. Pharma Drug Discov. Toxicol. Med. 2013, 13, 25–30. [Google Scholar]
- Hou, J.; Wu, Y.; Li, X.; Wei, B.; Li, S.; Wang, X. Toxic effects of different types of zinc oxide nanoparticles on algae, plants, invertebrates, vertebrates and microorganisms. Chemosphere 2018, 193, 852–860. [Google Scholar] [CrossRef]
- Romana, D.L.; Brown, K.H.; Guinard, J.-X. Sensory trial to assess the acceptability of zinc fortificants added to iron-fortified wheat products. J. Food Sci. 2006, 67, 461–465. [Google Scholar] [CrossRef]
- Pati, R.; Mehta, R.K.; Mohanty, S.; Padhi, A.; Sengupta, M.; Vaseeharan, B.; Goswami, C.; Sonawane, A. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomedicine 2014, 10, 1195–1208. [Google Scholar] [CrossRef]
- Bhattacharyya, P.; Agarwal, B.; Goswami, M.; Maiti, D.; Baruah, S.; Tribedi, P. Zinc oxide nanoparticle inhibits the biofilm formation of Streptococcus pneumoniae. Antonie Van Leeuwenhoek 2018, 111, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Sangani, M.H.; Moghaddam, M.N.; Forghanifard, M.M. Inhibitory effect of zinc oxide nanoparticles on Pseudomonas aeruginosa biofilm formation. Nanomed. J. 2015, 2, 121–128. [Google Scholar]
- Canaparo, R.; Foglietta, F.; Limongi, T.; Serpe, L. Biomedical applications of reactive oxygen species generation by metal nanoparticles. Materials 2020, 14, 53. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, B.; Ameen, F.; Rizvi, A.; Ali, K.; Sonbol, H.; Zaidi, A.; Musarrat, J. Destruction of cell topography, morphology, membrane, inhibition of respiration, biofilm formation, and bioactive molecule production by nanoparticles of Ag, ZnO, CuO, TiO2, and Al2O3 toward beneficial soil bacteria. ACS Omega 2020, 5, 7861–7876. [Google Scholar] [CrossRef] [Green Version]
- Awasthi, A.; Sharma, P.; Jangir, L.; Kamakshi; Awasthi, G.; Awasthi, K.K.; Awasthi, K. Dose dependent enhanced antibacterial effects and reduced biofilm activity against Bacillus subtilis in presence of ZnO nanoparticles. Mater. Sci. Eng. C 2020, 113, 111021. [Google Scholar] [CrossRef]
- Ramezani-Pour, N.; Badoei-Dalfard, A.; Namaki-Shoushtari, A.; Karami, Z. Nitrile-metabolizing potential of Bacillus cereus strain FA12; nitrilase production, purification, and characterization. Biocatal. Biotransform. 2015, 33, 156–166. [Google Scholar] [CrossRef]
- Narayanan, M.; Murugan, J.M.; Kandasamy, G.; Kandasamy, S.; Nasif, O.; Rajendran, M.; Pugazhendhi, A. The biotransformation potential of Bacillus cereus on β-cypermethrin to protect the earthworm (Perionyx excavatus) on insecticide-contaminated soil. Arch. Agron. Soil Sci. 2022, 68, 944–955. [Google Scholar] [CrossRef]
- Aregbesola, O.A.; Mokoena, M.P.; Olaniran, A.O. Biotransformation of pentachlorophenol by an indigenous Bacillus cereus AOA-CPS1 isolated from wastewater effluent in Durban, South Africa. Biodegradation 2020, 31, 369–383. [Google Scholar] [CrossRef]
- Zabłocka-Godlewska, E.; Przystaś, W.; Grabińska-Sota, E. Decolourisation of different dyes by two Pseudomonas strains under various growth conditions. Water Air Soil Pollut. 2014, 225, 1846. [Google Scholar] [CrossRef] [Green Version]
- Saratale, R.G.; Saratale, G.D.; Chang, J.S.; Govindwar, S. Bacterial decolorization and degradation of Azo Dyes: A Review. J. Taiwan Inst. Chem. Eng. 2011, 42, 138–157. [Google Scholar] [CrossRef]
- Tony, B.D.; Goyal, D.; Khanna, S. Decolorization of textile azo dyes by aerobic bacterial consortium. Int. Biodeterior. Biodegrad. 2009, 63, 462–469. [Google Scholar] [CrossRef]
- Deng, D.; Guo, J.; Zeng, G.; Sun, G. Decolorization of anthraquinone, triphenylmethane and azo dyes by a new isolated Bacillus cereus strain DC11. Int. Biodeter. Biodegrad. 2008, 62, 253–269. [Google Scholar] [CrossRef]
- Divya, B.; Karthikeyan, C.; Rajasimman, M. Chemical synthesis of zinc oxide nanoparticles and its application of dye decolourization. Int. J. Nanosci. Nanotechnol. 2018, 14, 267–275. [Google Scholar]
ZnONPs [mg/mL] | Optical Density [Absorbance] | Spore Formation [%] | NBT Reduction [Formazan Absorbance] | Biofilm Formation [Crystal Violet Absorbance] | Evans Blue Decolouration [% of Decolouration] |
---|---|---|---|---|---|
0 (control) | 1.447 a | 15 a | 0.127 a | 0.3245 a | 42.67 a |
0.2 | 1.259 b | 16 a | 0.155 ab | 0.394 b | 36.43 a |
0.4 | 1.112 c | 20 a | 0.244 b | 0.428 c | 33.91 a |
0.6 | 0.930 d | 20 a | 0.260 bc | 0.448 c | 22.88 b |
0.8 | 0.839 e | 22.5 a | 0.289 cd | 0.586 d | 23.50 b |
Pearson correlation coefficients | −0.994 | 0.965 | 0.967 | 0.950 | −0.959 |
Analysed Substances | Antimicrobial Activity of Chemical Compounds [mm Inhibition Zone] | Pearson Correlation Coefficients | ||||
---|---|---|---|---|---|---|
ZnONPs | Control | 0.2 mg | 0.4 mg | 0.6 mg | 0.8 mg | |
0 | 8 | 10 | 12 | 13 | 0.902 | |
Chemical compound alone | 0.2 mg ZnONPs + S | 0.4 mg ZnONPs + S | 0.6 mg ZnONPs + S | 0.8 mg ZnONPs + S | ||
Tetracycline | 36 | 36 | 36 | 35 | 35 | −0.866 |
4-Hydroksybenzoic acid | 0 | 13 | 16 | 13 | 13 | 0.654 |
Sodium salicylate | 0 | 13 | 17 | 14 | 13 | 0.649 |
Trans-cinnamic acid | 0 | 12 | 16 | 15 | 13 | 0.822 |
Quercetin | 0 | 13 | 17 | 13 | 12 | 0.589 |
Gallic acid | 0 | 15 | 16 | 10 | 10 | 0.374 |
Coumarin | 0 | 13 | 16 | 13 | 11 | 0.562 |
Coumaric acid | 0 | 15 | 19 | 16 | 15 | 0.693 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzepiłko, A.; Matyszczuk, K.M.; Święciło, A. Effect of Sublethal Concentrations of Zinc Oxide Nanoparticles on Bacillus cereus. Pathogens 2023, 12, 485. https://doi.org/10.3390/pathogens12030485
Krzepiłko A, Matyszczuk KM, Święciło A. Effect of Sublethal Concentrations of Zinc Oxide Nanoparticles on Bacillus cereus. Pathogens. 2023; 12(3):485. https://doi.org/10.3390/pathogens12030485
Chicago/Turabian StyleKrzepiłko, Anna, Katarzyna Magdalena Matyszczuk, and Agata Święciło. 2023. "Effect of Sublethal Concentrations of Zinc Oxide Nanoparticles on Bacillus cereus" Pathogens 12, no. 3: 485. https://doi.org/10.3390/pathogens12030485
APA StyleKrzepiłko, A., Matyszczuk, K. M., & Święciło, A. (2023). Effect of Sublethal Concentrations of Zinc Oxide Nanoparticles on Bacillus cereus. Pathogens, 12(3), 485. https://doi.org/10.3390/pathogens12030485