Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,003)

Search Parameters:
Keywords = Bacillus cereus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1134 KiB  
Article
Biological and Physico-Chemical Properties of Lobosphaera sp. Packed in Metallized Polyethylene Terephthalate/Polyethylene (PETmet/PE)
by Valter F. R. Martins, Ana J. Alves, Fátima Poças, Manuela Pintado, Rui M. S. C. Morais and Alcina M. M. B. Morais
Phycology 2025, 5(3), 35; https://doi.org/10.3390/phycology5030035 - 6 Aug 2025
Abstract
This study evaluated the effects of different storage conditions, varying in light exposure, relative humidity (RH), and packaging materials, on the physicochemical stability of Lobosphaera sp. biomass, the retention of bioactive compounds, and the bioactivity of its extracts. Under light and 75% RH, [...] Read more.
This study evaluated the effects of different storage conditions, varying in light exposure, relative humidity (RH), and packaging materials, on the physicochemical stability of Lobosphaera sp. biomass, the retention of bioactive compounds, and the bioactivity of its extracts. Under light and 75% RH, the biomass absorbed moisture over time, reaching 0.779 ± 0.003 g/g dry weight (DW) after three months. This was accompanied by a decline in luminosity, chroma, and hue values. In contrast, samples stored under other conditions showed minimal changes, indicating that high humidity, combined with light exposure, compromises biomass stability. Packaging in metalized polyethylene terephthalate (PETmet/PE) effectively preserved the water content, color, and carotenoid levels during a two-month storage period. Bioactive compounds extracted via hydroethanolic ultrasound-assisted extraction yielded 15.48 ± 1.35% DW. Total phenolic content (TPC) of the extracts declined over time in both PETmet/PE and low-density polyethylene (LDPE) packaging, though the decrease was less pronounced in PETmet/PE. Antioxidant activity, assessed via the ABTS assay, remained stable, regardless of storage duration or packaging. Antimicrobial activity of the extract decreased over time but remained more effective against Gram-positive bacteria (Staphylococcus aureus, Bacillus cereus, and Listeria monocytogenes), with PETmet/PE packaging better preserving antimicrobial efficacy than LDPE. These findings underscore the importance of optimized storage conditions and packaging for maintaining the quality and bioactivity of Lobosphaera sp. biomass and its extracts. Full article
Show Figures

Figure 1

19 pages, 1579 KiB  
Article
Plasma-Treated Water Effect on Sporulating Bacillus cereus vs. Non-Sporulating Listeria monocytogenes Biofilm Cell Vitality
by Samantha Nestel, Robert Wagner, Mareike Meister, Thomas Weihe and Uta Schnabel
Appl. Microbiol. 2025, 5(3), 80; https://doi.org/10.3390/applmicrobiol5030080 - 5 Aug 2025
Abstract
Foodborne illness caused by bacterial pathogens is a global health concern and results in millions of infections annually. Therefore, food products typically undergo several processing stages, including sanitation steps, before being distributed in an attempt to remove pathogens. However, many sanitation methods have [...] Read more.
Foodborne illness caused by bacterial pathogens is a global health concern and results in millions of infections annually. Therefore, food products typically undergo several processing stages, including sanitation steps, before being distributed in an attempt to remove pathogens. However, many sanitation methods have compounding effects on the color, texture, flavor, and nutritional quality of the product or do not effectively reduce the pathogens that food can be exposed to. Some bacterial pathogens particularly possess traits and tactics that make them even more difficult to mitigate such as biofilm formation. Non-thermal plasma sanitation techniques, including plasma-treated water (PTW), have proven to be promising methods that significantly reduce pathogenic bacteria that food is exposed to. Published work reveals that PTW can effectively mitigate both gram-positive and gram-negative bacterial biofilms. This study presents a novel analysis of the differences in antimicrobial effects of PTW treatment between biofilm-forming gram-positive bacteria, commonly associated with foodborne illness, that are sporulating (Bacillus cereus) and non-sporulating (Listeria monocytogenes). After treatment with PTW, the results suggest the following hypotheses: (1) that the non-sporulating species experiences less membrane damage but a greater reduction in metabolic activity, leading to a possible viable but non-culturable (VBNC) state, and (2) that the sporulating species undergoes spore formation, which may subsequently convert into vegetative cells over time. PTW treatment on gram-positive bacterial biofilms that persist in food processing environments proves to be effective in reducing the proliferating abilities of the bacteria. However, the variance in PTW’s effects on metabolic activity and cell vitality between sporulating and non-sporulating species suggest that other survival tactics might be induced. This analysis further informs the application of PTW in food processing as an effective sanitation method. Full article
Show Figures

Graphical abstract

20 pages, 2168 KiB  
Article
Microbial Profiling of Buffalo Mozzarella Whey and Ricotta Exhausted Whey: Insights into Potential Probiotic Subdominant Strains
by Andrea Bonfanti, Romano Silvestri, Ettore Novellino, Gian Carlo Tenore, Elisabetta Schiano, Fortuna Iannuzzo, Massimo Reverberi, Luigi Faino, Marzia Beccaccioli, Francesca Sivori, Carlo Giuseppe Rizzello and Cristina Mazzoni
Microorganisms 2025, 13(8), 1804; https://doi.org/10.3390/microorganisms13081804 - 1 Aug 2025
Viewed by 141
Abstract
Buffalo mozzarella cheese whey (CW) and ricotta cheese exhausted whey (RCEW) are valuable by-products of the Mozzarella di Bufala Campana PDO production chain. This study characterized their microbial communities using an integrated culture-dependent and -independent approach. Metabarcoding analysis revealed that the dominance of [...] Read more.
Buffalo mozzarella cheese whey (CW) and ricotta cheese exhausted whey (RCEW) are valuable by-products of the Mozzarella di Bufala Campana PDO production chain. This study characterized their microbial communities using an integrated culture-dependent and -independent approach. Metabarcoding analysis revealed that the dominance of lactic acid bacteria (LAB), including Streptococcus thermophilus, Lactobacillus delbrueckii, and Lactobacillus helveticus, alongside diverse heat-resistant yeasts such as Cyberlindnera jadinii. Culture-based isolation identified subdominant lactic acid bacteria strains, not detected by sequencing, belonging to Leuconostoc mesenteroides, Enterococcus faecalis, and Enterococcus durans. These strains were further assessed for their probiotic potential. E. faecalis CW1 and E. durans RCEW2 showed tolerance to acidic pH, bile salts, and lysozyme, as well as a strong biofilm-forming capacity and antimicrobial activity against Bacillus cereus and Staphylococcus aureus. Moreover, bile salt resistance suggests potential functionality in cholesterol metabolism. These findings support the potential use of CW and RCEW as reservoirs of novel, autochthonous probiotic strains and underscore the value of regional dairy by-products in food biotechnology and gut health applications. Full article
(This article belongs to the Special Issue Microbial Fermentation, Food and Food Sustainability)
Show Figures

Figure 1

16 pages, 3274 KiB  
Article
Cometabolic Biodegradation of Hydrazine by Chlorella vulgaris–Bacillus Extremophilic Consortia: Synergistic Potential for Space and Industry
by Yael Kinel-Tahan, Reut Sorek-Abramovich, Rivka Alexander-Shani, Irit Shoval, Hagit Hauschner, Chen Corsia, Ariel Z. Kedar, Igor Derzy, Itsik Sapir, Yitzhak Mastai, Ashraf Al Ashhab and Yaron Yehoshua
Life 2025, 15(8), 1197; https://doi.org/10.3390/life15081197 - 28 Jul 2025
Viewed by 907
Abstract
Hydrazine, a highly toxic and reactive compound widely used as rocket fuel, poses significant environmental and health risks, particularly in long-term space missions. This study investigates the cometabolic capacity of Chlorella vulgaris and seven extremophilic Bacillus spp. strains—isolated from the arid Dead Sea [...] Read more.
Hydrazine, a highly toxic and reactive compound widely used as rocket fuel, poses significant environmental and health risks, particularly in long-term space missions. This study investigates the cometabolic capacity of Chlorella vulgaris and seven extremophilic Bacillus spp. strains—isolated from the arid Dead Sea region—to tolerate and degrade hydrazine at concentrations up to 25 ppm. The microalga C. vulgaris reduced hydrazine levels by 81% within 24 h at 20 ppm, while the Bacillus isolates achieved an average reduction of 45% over 120 h. Identified strains included B. licheniformis, B. cereus, and B. atrophaeus. Co-culture experiments demonstrated that C. vulgaris and B. cereus (isolate ISO-36) stably coexisted without antagonistic effects, suggesting a synergistic detoxification interaction. Flow cytometry revealed that most bacteria transitioned into spores under stress, highlighting a survival adaptation. Titanium, representing a biocompatible material common in aerospace hardware, did not inhibit microbial growth or hydrazine degradation. These findings underscore the potential of Dead Sea-derived microbial consortia for cometabolic hydrazine detoxification and support the feasibility of converting spacecraft components into functional photobioreactors. This approach offers dual-use benefits for space missions and industrial wastewater treatment. Future studies should investigate degradation pathways, stress resilience, and bioreactor scale-up. Full article
(This article belongs to the Special Issue Microalgae and Their Biotechnological Potential)
Show Figures

Figure 1

16 pages, 1319 KiB  
Article
Key Factors Influencing Bacillus cereus Contamination in Hot Ready-to-Eat Meal Delivery
by Tomáš Komprda, Olga Cwiková, Vojtěch Kumbár, Gabriela Franke, Petr Kouřil, Ondřej Patloka, Josef Kameník, Marta Dušková and Alena Zouharová
Foods 2025, 14(15), 2605; https://doi.org/10.3390/foods14152605 - 24 Jul 2025
Viewed by 361
Abstract
With increasing popularity of food delivery services, the microbial safety of transported meals should be ensured. An effect of the type of a meal (cooked rice; mashed potatoes; mushroom sauce), inner primary packaging (sugarcane bagasse [SB] tray; polypropylene [PP] tray), secondary container (polyester/polyethylene [...] Read more.
With increasing popularity of food delivery services, the microbial safety of transported meals should be ensured. An effect of the type of a meal (cooked rice; mashed potatoes; mushroom sauce), inner primary packaging (sugarcane bagasse [SB] tray; polypropylene [PP] tray), secondary container (polyester/polyethylene foam/aluminum foil [PPA] bag; PP box) on the time interval of the internal hot ready-to-eat (RTE) meal temperature decrease to the value critical for Bacillus cereus growth (40 °C) was tested during a simulated delivery; in aliquot samples of the same meals, B. cereus growth was quantified presuming a natural contamination of the meals. Type of a meal had no effect on the tested time interval (p > 0.05). Packaging a meal in the PP tray as compared to the SB tray and inserting primary trays into the PP box instead of PPA bag delayed (p < 0.05) the internal meal temperature decrease by 50 and 15 min, respectively. Average B. cereus counts in the naturally contaminated meals after the four-hour culturing at 40 °C was 2.99 log CFU·g−1. It was concluded that a hot RTE meal delivered up to four hours under the tested conditions is not likely to facilitate B. cereus growth above unacceptable levels. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Graphical abstract

14 pages, 935 KiB  
Systematic Review
The Global Prevalence of Bacillus spp. in Milk and Dairy Products: A Systematic Review and Meta-Analysis
by Tianmei Sun, Ran Wang, Yanan Sun, Xiaoxu Zhang, Chongtao Ge and Yixuan Li
Foods 2025, 14(15), 2599; https://doi.org/10.3390/foods14152599 - 24 Jul 2025
Viewed by 275
Abstract
The spoilage of dairy products and foodborne diseases caused by Bacillus spp. are important public concerns. The objective of this study was to estimate the global prevalence of Bacillus spp. in a range of milk and dairy products by using a meta-analysis of [...] Read more.
The spoilage of dairy products and foodborne diseases caused by Bacillus spp. are important public concerns. The objective of this study was to estimate the global prevalence of Bacillus spp. in a range of milk and dairy products by using a meta-analysis of literature data published between 2001 and 2023. A total of 3624 publications were collected from Web of Science and PubMed databases. Following the principles of systematic review, 417 sets of prevalence data were extracted from 142 eligible publications. Estimated by the random-effects model, the overall prevalence of Bacillus spp. in milk and dairy products was 11.8% (95% CI: 10.1–13.7%), with highly severe heterogeneity (94.8%). Subgroup analyses revealed substantial heterogeneity in Bacillus spp. prevalence according to geographical continents, sources of sampling, types of dairy products, microbial species, and detection methods. The prevalence of Bacillus spp. was highest in Asia (15.4%, 95% CI: 12.3–19.1%), lowest in Oceania (3.5%, 95% CI: 3.3–3.7%) and generally higher in developing versus developed countries. The prevalence of Bacillus spp. isolated from retail markets (16.1%, 95% CI: 13.0–19.7%) was higher than from farms (10.3%, 95% CI: 6.9–15.0%) or dairy plants (9.2%, 95% CI: 7.1–12.0%). This finding is likely attributable to its inherent characteristic of the resistant endospores and ubiquitous presence in the environment—Bacillus spp. can potentially cyclically contaminate farms, dairy products and human markets. Regarding the species distribution, Bacillus cereus presented a cosmopolitan distribution across all continents. The epidemic patterns of different Bacillus species vary depending on the sample sources. In addition, the detection method utilized also affected the reported prevalence of Bacillus spp. It is recommended to use molecular-based rapid detection methods to obtain a more accurate prevalence of Bacillus contamination. Therefore, a better understanding of variations in Bacillus spp. prevalence across different factors will enable competent authorities, industries, and other relevant stakeholders to tailor their interventions for effectively controlling Bacillus spp. in milk and dairy products. Full article
Show Figures

Figure 1

16 pages, 6389 KiB  
Article
Biocontrol Potential of Rhizosphere Bacteria Against Fusarium Root Rot in Cowpea: Suppression of Mycelial Growth and Conidial Germination
by Qinghua Zhu, Yixuan Ma, Tong Zhang, Weirong Liu, Songbai Zhang, Yue Chen, Di Peng and Xin Zhang
Biology 2025, 14(8), 921; https://doi.org/10.3390/biology14080921 - 23 Jul 2025
Viewed by 277
Abstract
The cultivation of cowpea (Vigna unguiculata), a vital vegetable crop, faces significant threats from Fusarium spp.-induced root rot. In this study, three fungal pathogens (Fusarium falciforme HKFf, Fusarium incarnatum HKFi, and Fusarium oxysporum HKFo) were isolated from symptomatic cowpea plants, [...] Read more.
The cultivation of cowpea (Vigna unguiculata), a vital vegetable crop, faces significant threats from Fusarium spp.-induced root rot. In this study, three fungal pathogens (Fusarium falciforme HKFf, Fusarium incarnatum HKFi, and Fusarium oxysporum HKFo) were isolated from symptomatic cowpea plants, and we screened 90 rhizobacteria from healthy rhizospheres using six culture media. Among these pathogens, Priestia megaterium TSA-10E showed a notable suppression of F. oxysporum HKFo (63.21%), F. incarnatum HKFi (55.16%), and F. falciforme HKFf (50.93%). In addition, Bacillus cereus KB-6 inhibited the mycelial growth of F. incarnatum HKFi and F. oxysporum HKFo by 42.39% and 47.93%, respectively. Critically, cell-free filtrates from P. megaterium TSA-10E and B. cereus KB-6 cultures reduced conidial germination in F. oxysporum HKFo and F. incarnatum HKFi, highlighting their role in disrupting the early infection stages. In greenhouse trials, TSA-10E and KB-6 reduced disease severity by 48.7% and 40.4%, respectively, with treated plants maintaining healthy growth while untreated controls succumbed to wilting. Broad-spectrum assays revealed that B. subtilis TSA-6E and P. megaterium TSA-10E were potent antagonists against both economic and grain crop pathogens. These findings underscore the potential of rhizobacteria as sustainable biocontrol agents for managing root rot disease caused by Fusarium spp. in cowpea cultivation. Full article
(This article belongs to the Special Issue Advances in Research on Diseases of Plants (2nd Edition))
Show Figures

Figure 1

14 pages, 1416 KiB  
Article
Bacillus spp. Potentiate the Virulence and Intracellular Invasion of A. paragallinarum in Chickens
by Jiajia Zhu, Ying Liu, Ting Gao, Yunsheng Chen, Keli Yang, Wei Liu, Kui Zhu and Danna Zhou
Animals 2025, 15(14), 2076; https://doi.org/10.3390/ani15142076 - 14 Jul 2025
Viewed by 275
Abstract
Coinfection poses severe threats to poultry health, particularly due to the complexity and resilience of multispecies interactions, increasing the difficulty of treatment. Haemophilus spp., a heterotrophic bacterium, heavily relies on extracellular growth factors acquired from other organisms or its surrounding environment. Although coinfections [...] Read more.
Coinfection poses severe threats to poultry health, particularly due to the complexity and resilience of multispecies interactions, increasing the difficulty of treatment. Haemophilus spp., a heterotrophic bacterium, heavily relies on extracellular growth factors acquired from other organisms or its surrounding environment. Although coinfections by Avibacterium paragallinarum and Bacillus have been reported, the underlying mechanism of the cooperative interaction remains poorly understood. In this study, we characterized the growth-promoting properties and nicotinamide adenine dinucleotide production of some Bacillus species, including probiotic Bacillus, to evaluate the feasibility of A. paragallinarum coinfection in vitro. Meanwhile, we determined the minimum inhibitory concentration (MIC) and population dynamics of cocultured Bacillus and A. paragallinarum to assess the effect of bacterial interactions on antibiotic efficacy. Additionally, we demonstrated that B. cereus aggravates rhinitis symptoms in chickens infected with A. paragallinarum. Our findings reveal that Bacillus spp.-derived metabolites sustain A. paragallinarum growth and enhance its survival, thereby highlighting the infection risks associated with Bacillus colonization in the respiratory tract. Full article
Show Figures

Figure 1

30 pages, 4680 KiB  
Article
Production of Lanhouin—A Fermented Catfish (Clarias gariepinus) Using the Selected Lactiplantibacillus pentosus Probiotic Strain
by Vasilica Barbu, Chimène Agrippine Rodogune Yelouassi, Mihaela Cotârleț, Leontina Grigore-Gurgu, Comlan Kintomagnimessè Célestin Tchekessi and Pierre Dossou-Yovo
Sustainability 2025, 17(14), 6387; https://doi.org/10.3390/su17146387 - 11 Jul 2025
Viewed by 585
Abstract
Lactic acid bacteria (LAB) preserve many foods and play a vital role in fermented food products. This study designed a controlled biotechnological process of catfish (Clarias gariepinus) fermentation with a LAB starter culture isolated from corn hydrolysate. The BY (Barbu-Yelouassi) LAB [...] Read more.
Lactic acid bacteria (LAB) preserve many foods and play a vital role in fermented food products. This study designed a controlled biotechnological process of catfish (Clarias gariepinus) fermentation with a LAB starter culture isolated from corn hydrolysate. The BY (Barbu-Yelouassi) LAB strain was characterized regarding fermentative and antimicrobial potential, and its adaptability in the simulated gastrointestinal system (SGIS). After 10–12 h of cultivation on MRS broth (De Man Rogosa and Sharpe), the strain achieved the maximum exponential growth, produced maximum lactic acid (33.04%), and decreased the acidity up to pH 4. Also, the isolated strain showed increased tolerance to an acidic pH (3.5–2.0), high concentrations of salt (2–10%), and high concentrations of bile salts (≤2%). The behavior in SGIS demonstrated good viability after 2 h in artificial gastric juice (AGJ) (1 × 107 CFU/mL) and up to 2 × 103 CFU/mL after another 6 h in artificial intestinal juice (AIJ). The characterized BY strain was identified with the API 50CHL microtest (BioMerieux) as Lactiplantibacillus pentosus (Lbp. pentosus) (90.9% probability), taxon confirmed by genomic DNA sequencing. It was also demonstrated that Lbp. pentosus BY inhibited the growth of pathogenic bacteria, including Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, and sporulated bacteria, such as Bacillus cereus. Additionally, it suppressed the sporulation of fungi like Aspergillus niger, Fusarium sp., and Penicillium sp. Furthermore, the Lbp. pentosus BY strain was used to ferment catfish, resulting in three variants of lanhouin (unsalted, with 10% salt, and with 15% salt), which exhibited good microbiological safety. Full article
(This article belongs to the Special Issue Sustainable Food Preservation)
Show Figures

Figure 1

18 pages, 437 KiB  
Article
Validation of a Real-Time PCR Assay for Fully Automated Detection of Bacillus cereus in Donor Human Milk
by Gemma Aran, Vanessa Pleguezuelos, Margarita Blanco, Cristina Garcia, Mariama Jallow, Mar López, Sara Monge, Natalia Casamitjana, Eva Alonso-Nogués and Gloria Soria
Microorganisms 2025, 13(7), 1640; https://doi.org/10.3390/microorganisms13071640 - 11 Jul 2025
Viewed by 371
Abstract
Donor human milk (DHM) can harbor microbial contaminants that cause serious infections in premature infants. Bacillus cereus is a pathogen frequently found in DHM, capable of forming spores that can resist Holder pasteurization (62.5 °C, 30 min). Since no microbial growth is acceptable [...] Read more.
Donor human milk (DHM) can harbor microbial contaminants that cause serious infections in premature infants. Bacillus cereus is a pathogen frequently found in DHM, capable of forming spores that can resist Holder pasteurization (62.5 °C, 30 min). Since no microbial growth is acceptable in post-pasteurized DHM, microbiological testing of pre-pasteurized DHM provides information about its contamination level to determine if it should be accepted for pasteurization. Culture is the gold standard in microbiological control but it requires 24–48 h to provide results. In this study we developed and validated a non-commercial real-time PCR assay for the detection of Bacillus cereus (BC test) in DHM specimens on a fully automated high-throughput platform, the cobas® 6800 system. The BC test showed excellent sensitivity and specificity, repeatability and linearity over an 8-log range and a low limit of detection in milk specimens, as well as good agreement with selective culture methods. BC test was then used to systematically control all milk donations (3439) over a 24-month period. Bacillus cereus was detected in 14.2% of DHM, with monthly rates ranging from 6 to 29% and a significantly higher incidence in warmer months. Incorporating this assay into our laboratory workflow improved efficiency and reduced turnaround time. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

16 pages, 3194 KiB  
Article
Isolation and Characterizations of Histamine- and Tyramine-Producing Strains Isolated from Fermented Soybean Food: Soy Sauce and Soybean Paste
by Xiao Zhang, Sihao Li, Heng Liu, Anurak Wongta, Zhenlin Xu, Kai Zhou and Surat Hongsibsong
Foods 2025, 14(14), 2407; https://doi.org/10.3390/foods14142407 - 8 Jul 2025
Viewed by 555
Abstract
Histamine (HIM) and tyramine (TYM) are among the most toxic biogenic amines (BAs) commonly found in various fermented soybean foods, yet the crucial BAs-producing strains are ignored. This study discussed and compared the effectiveness of two methods based on medium pH screening and [...] Read more.
Histamine (HIM) and tyramine (TYM) are among the most toxic biogenic amines (BAs) commonly found in various fermented soybean foods, yet the crucial BAs-producing strains are ignored. This study discussed and compared the effectiveness of two methods based on medium pH screening and target gene amplification for identifying HIM- and TYM-producing strains from two fermented soybean foods. The crucial strains responsible for HIM and TYM formation were identified and then characterized. It was found that the strains forming large amounts of total BAs promoted a high pH at the final medium, but there was no correlation between TYM/HIM formation and the pH value among the isolates. Furthermore, a large portion of isolates that produce TYM/HIM cannot be amplified. The hdc and tdc genes utilized reported universal pairs of primers, resulting in false negative results. Following two rounds of screening, most TYM/HIM-producing strains were found to belong to Bacillus. Bacillus cereus-HT-31-2 and Millerozyma farinosa-HT-42-1 were identified as crucial producers of TYM and HIM in soy sauce during the fermentation stage, while Proteus mirabilis-T-24-2 was found to be the key producer of TYM in thua nao. Moreover, the simulated medium was found to be beneficial for the formation of TYM/HIM by B. cereus-HT-31-2 and P. mirabilis-T-24-2, but not for M. farinosa-HT-42-1. The formation of TYM/HIM was not synchronized under different conditions. This study provides insights into the key strain responsible for the formation of HIM and TYM in fermented soybean foods. Full article
Show Figures

Figure 1

17 pages, 4162 KiB  
Article
Silver Nanoparticles Embedded in Sodium Alginate: Antibacterial Efficacy and Effects on Red Cabbage Seedling Performance
by Miłosz Rutkowski, Wojciech Makowski, Lidia Krzemińska-Fiedorowicz, Karen Khachatryan, Andrzej Kalisz, Dagmara Malina, Jarosław Chwastowski, Zbigniew Wzorek, Gohar Khachatryan, Agnieszka Sękara and Anna Kołton
Agronomy 2025, 15(7), 1640; https://doi.org/10.3390/agronomy15071640 - 5 Jul 2025
Viewed by 410
Abstract
Innovative plant protection solutions are increasingly sought in modern agriculture. Rapid advances in nanotechnology offer promising opportunities to develop biodegradable, cost-effective composites containing silver nanoparticles (AgNPs) with well-documented antimicrobial properties. The aim of this study was to synthesize sodium alginate gels containing AgNPs, [...] Read more.
Innovative plant protection solutions are increasingly sought in modern agriculture. Rapid advances in nanotechnology offer promising opportunities to develop biodegradable, cost-effective composites containing silver nanoparticles (AgNPs) with well-documented antimicrobial properties. The aim of this study was to synthesize sodium alginate gels containing AgNPs, evaluate their physicochemical and antibacterial properties, and assess their effect on the growth of red cabbage (Brassica oleracea var. capitata f. rubra) seedlings. In accordance with the principles of green chemistry, AgNPs were chemically synthesized using sodium alginate as a stabilizer and fructose as a non-toxic reducing agent. The final composite contained 150 mg/L AgNPs and was diluted to 20 and 60 mg/L for biological tests. Antibacterial activity against Bacillus cereus, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa was tested using agar diffusion assays. Seedling growth parameters and phytochemical content were assessed after 10 days of seedlings exposure to AgNPs. The results showed significant antibacterial activity in all tested strains. Crucially, neither AgNPs concentration negatively affected seedling development or phytochemical concentration. Application of AgNPs at concentration of 60 mg/L increased ascorbic acid and carotenoids content in comparison to control (deionized water). These results suggest that AgNPs-alginate composites may serve as sustainable antimicrobial agents in agriculture, inhibiting pathogens without compromising crop quality. Full article
Show Figures

Figure 1

18 pages, 2880 KiB  
Article
Evaluation of Environmentally Important Elements from Glacial Ice-Water and Associated Glacial Sediments
by Kashmala Jadoon, Syeda Fazoon Kazmi, Sidra Arshad, Noor ul Huda Sajid, Adnan Ahmad Tahir, Özgür Doğan, Alidehou Jerrold Agbankpe and Rashid Nazir
Earth 2025, 6(3), 71; https://doi.org/10.3390/earth6030071 - 2 Jul 2025
Viewed by 837
Abstract
Glaciers are significant sources of fresh water on planet Earth. The Hindukush–Karakoram–Himalayan (HKH) glaciers provide the water supply to more than half of the human population of the globe, for agricultural activities, biodiversity survival, and ecosystem services. In recent years, the loss of [...] Read more.
Glaciers are significant sources of fresh water on planet Earth. The Hindukush–Karakoram–Himalayan (HKH) glaciers provide the water supply to more than half of the human population of the globe, for agricultural activities, biodiversity survival, and ecosystem services. In recent years, the loss of glacial ice has been forecasted to cause problems such as sea level rise, changes in water availability, and release of contaminants that reside in the surfaces of glaciers or within them. In this regard, mineralogical sediments play a significant role in the geochemistry of glaciers and element cycling. This study analyzed elemental pollutants found in the glaciers of Pakistan and investigated the diverse bacterial communities residing therein. Samples of ice and sediments were collected from the Gilgit, Hunza, and Swat glaciers in northern Pakistan. Nine elements, including co-factors, heavy metals, and nutrients, were assessed using atomic absorption spectrophotometry. The research findings indicate higher concentrations of the elements K, Fe, Cu, and Cr in Hunza glacier ice (Hgi) and Ni, Zn, As, and Cd in Gilgit glacier ice (Ggi). In terms of glacier sediments, Swat (Sgs), Gilgit (Ggs), and Hunza (Hgs) samples showed the highest concentrations of K, Cu, Ni, Zn, As, Pb, Cd, and, respectively, of Fe, and Cr. The amount of Cu and Cr is the same in Swat glacier ice and Swat glacier foot. However, the concentration of some elements (As, K, Pb, Zn) is higher in Swat glacier ice, while the amount of some elements (Cd, Ni) is greater in Swat glacier foot. Furthermore, microbial cultivation techniques revealed diverse bacterial communities inhabiting the sampled glaciers. Phylogenetic analysis of the bacterial isolates, based on 16S rRNA gene sequences, showed high homology (99–100%) with previously reported species. The resultant phylogenetic tree grouped the bacterial isolates, such as Serratia marcescens, Cupriavidus sp., and Bacillus cereus, with closely related species known for their roles in nutrient cycling, environmental resilience, and metal tolerance. These findings highlight the ecological significance and adaptive potential of microbial communities in glacier environments, emphasizing their role in elemental cycling and environmental resilience. Full article
Show Figures

Figure 1

23 pages, 4022 KiB  
Article
Comprehensive Analysis of Bacterial Communities and Microbiological Quality of Frozen Edible Insects
by Sasiprapa Krongdang, Nipitpong Sawongta, Jintana Pheepakpraw, Achirawit Ngamsomchat, Sutee Wangtueai, Jittimon Wongsa, Thanya Parametthanuwat, Narin Charoenphun and Thararat Chitov
Foods 2025, 14(13), 2347; https://doi.org/10.3390/foods14132347 - 1 Jul 2025
Viewed by 425
Abstract
Edible insects are gaining traction worldwide; however, the existing data regarding their microbiological quality remain inadequate. This study investigated the bacterial communities and microbiological quality of five types of frozen edible insects commercially available in Thailand. Amplicon sequencing revealed Firmicutes (Bacillota) and Proteobacteria [...] Read more.
Edible insects are gaining traction worldwide; however, the existing data regarding their microbiological quality remain inadequate. This study investigated the bacterial communities and microbiological quality of five types of frozen edible insects commercially available in Thailand. Amplicon sequencing revealed Firmicutes (Bacillota) and Proteobacteria (Pseudomonadota) as the main phyla across all samples; Bacteroidota was predominant in house crickets, Actinobacteriota in silkworms, and Desulfobacterota was exclusively found in house and mole crickets. Culture-based assays showed total viable counts, lactic acid bacteria, yeasts–molds, and spore-formers ranging from 3.41–6.58, 2.52–7.41, 1.83–5.62, to 2.00–4.70 log CFU·g−1, respectively. In some samples, Enterobacteriaceae and Escherichia coli, key hygiene indicators, reached 5.05 and 2.70 log CFU·g−1, respectively. Among foodborne pathogens, presumptive Bacillus cereus was found to vary from <1.70 to 3.93 log CFU·g−1, while Clostridium perfringens and Staphylococcus aureus were under the quantitation limit, and Salmonella was absent. Overall, the results indicate significant variation in microbial diversity and quality among different insect types. The high levels of microbial hygiene indicators and foodborne pathogens in some samples raised food safety concerns and point to the need to develop or implement production guidelines and microbiological criteria for frozen edible insects to ensure food safety. Full article
Show Figures

Graphical abstract

24 pages, 1894 KiB  
Article
Honey as a Bioindicator: Pollution’s Effects on Its Quality in Mining vs. Protected Sites
by Mirel Glevitzky, Mihai-Teopent Corcheş, Maria Popa and Mihaela Laura Vică
Appl. Sci. 2025, 15(13), 7297; https://doi.org/10.3390/app15137297 - 28 Jun 2025
Viewed by 357
Abstract
Heavy metal toxicity is an ecological concern in regions affected by processes like mining. This study underscores the potential of honey as a natural bioindicator for monitoring and assessing the levels of environmental contamination in mining-impacted areas. The study evaluated the physico-chemical characteristics, [...] Read more.
Heavy metal toxicity is an ecological concern in regions affected by processes like mining. This study underscores the potential of honey as a natural bioindicator for monitoring and assessing the levels of environmental contamination in mining-impacted areas. The study evaluated the physico-chemical characteristics, heavy metal content, and antimicrobial activity of honey samples collected from areas adjacent to former mining sites, as well as from protected areas within the same county in Romania. The results revealed significant differences between the two categories of locations. The samples from the protected areas showed higher levels of bioactive compounds (phenols and flavonoids) and exhibited stronger antibacterial activity. The heavy metal analysis indicated significantly higher concentrations of lead, cadmium, and iron in the honey samples from former mining areas compared to those from protected zones, suggesting pronounced industrial-origin contamination. The maximum recorded values were for Pb (0.607 mg/kg), Cd (0.02 mg/kg), Fe (12.131 mg/kg), Cu (0.545 mg/kg), and Zn (6.170 mg/kg). Their antimicrobial activity was tested against several bacterial and fungal strains, including Escherichia coli, Salmonella enteritidis, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, Bacillus cereus, Listeria monocytogenes, Candida albicans, Aspergillus niger, Aspergillus flavus, Penicillium chrysogenum, Rhizopus stolonifer, Fusarium oxysporum, and Alternaria alternata. The antibacterial and antifungal activity were more pronounced in the honey samples from the protected areas. These findings support the use of honey as a bioindicator of environmental quality and highlight the influence of its geographical origin on its therapeutic and chemical properties. Full article
(This article belongs to the Special Issue Advances in Honeybee and Their Biological and Environmental Threats)
Show Figures

Figure 1

Back to TopTop