Naturally Occurring Yeasts Associated with Thaumatotibia leucotreta Can Enhance the Efficacy of the Cryptophlebia Leucotreta Granulovirus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thaumatotibia leucotreta Culture
2.2. Detached Fruit Bioassays
2.3. Statistical Analysis
3. Results
3.1. Optimising the Yeast/Virus Ratio
3.2. Combining CrleGV with Yeast
3.3. Enhancing the Efficacy of Yeast/Virus Formulation
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mkiga, A.M.; Mohamed, S.A.; du Plessis, H.; Khamis, F.M.; Ekesi, S. Field and Laboratory Performance of False Codling Moth, Thaumatotibia leucotreta (Lepidoptera: Troticidae) on Orange and Selected Vegetables. Insects 2019, 10, 63. [Google Scholar] [CrossRef] [PubMed]
- Boardman, L.; Grout, T.G.; Terblanche, J.S. False Codling Moth Thaumatotibia leucotreta (Lepidoptera, Tortricidae) Larvae Are Chill-Susceptible. Insect Sci. 2012, 19, 315–328. [Google Scholar] [CrossRef]
- Moore, S.D. Biological Control of a Phytosanitary Pest (Thaumatotibia leucotreta): A Case Study. Int. J. Environ. Res. Public Health 2021, 18, 1198. [Google Scholar] [CrossRef]
- Hattingh, V.; Moore, S.; Kirkman, W.; Goddard, M.; Thackeray, S.; Peyper, M.; Sharp, G.; Cronjé, P.; Pringle, K. An Improved Systems Approach as a Phytosanitary Measure for Thaumatotibia leucotreta (Lepidoptera: Tortricidae) in Export Citrus Fruit From South Africa. J. Econ. Entomol. 2020, 113, 700–711. [Google Scholar] [CrossRef] [PubMed]
- Malan, A.; von Diest, J.; Moore, S.D.; Addison, P. Control Options for False Codling Moth, Thaumatotibia leucotreta (Lepidoptera: Tortricidae), in South Africa, With Emphasis on the Potential Use of Entomopathogenic Nematodes and Fungi. Afr. Entomol. 2018, 26, 14–29. [Google Scholar] [CrossRef]
- Rodriguez, V.A.; Belaich, M.N.; Ghiringhelli, P.D.; Rodriguez, V.A.; Belaich, M.N.; Ghiringhelli, P.D. Baculoviruses: Members of Integrated Pest Management Strategies; IntechOpen: La Plata, Argentinia, 2012; ISBN 978-953-51-0050-8. [Google Scholar]
- Hatting, J.L.; Moore, S.D.; Malan, A.P. Microbial Control of Phytophagous Invertebrate Pests in South Africa: Current Status and Future Prospects. J. Invertebr. Pathol. 2019, 165, 54–66. [Google Scholar] [CrossRef]
- Moore, S.; Jukes, M. Advances in Microbial Control in IPM: Entomopathogenic Viruses. In Integrated Management of Insect Pests; Kogan, M., Heinrichs, E., Eds.; Burleigh Dodds Science Publishing: Cambridge, UK, 2019; pp. 593–648. ISBN 978-1-78676-260-3. [Google Scholar]
- Moore, S.D.; Kirkman, W.; Richards, G.I.; Stephen, P.R. The Cryptophlebia Leucotreta Granulovirus—10 Years of Commercial Field Use. Viruses 2015, 7, 1284–1312. [Google Scholar] [CrossRef]
- Lacey, L.A.; Frutos, R.; Kaya, H.K.; Vail, P. Insect Pathogens as Biological Control Agents: Do They Have a Future? Biol. Control 2001, 21, 230–248. [Google Scholar] [CrossRef]
- Wilson, K.; Grzywacz, D.; Curcic, I.; Scoates, F.; Harper, K.; Rice, A.; Paul, N.; Dillon, A. A Novel Formulation Technology for Baculoviruses Protects Biopesticide from Degradation by Ultraviolet Radiation. Sci. Rep. 2020, 10, 13301. [Google Scholar] [CrossRef]
- Archana, H.R.; Darshan, K.; Amrutha Lakshmi, M.; Ghoshal, T.; Bashayal, B.M.; Aggarwal, R. 22—Biopesticides: A Key Player in Agro-Environmental Sustainability. In Trends of Applied Microbiology for Sustainable Economy; Soni, R., Suyal, D.C., Yadav, A.N., Goel, R., Eds.; Developments in Applied Microbiology and Biotechnology; Academic Press: Cambridge, MA, USA, 2022; pp. 613–653. ISBN 978-0-323-91595-3. [Google Scholar]
- Ballard, J.; Ellis, D.J.; Payne, C.C. The Role of Formulation Additives in Increasing the Potency of Cydia Pomonella Granulovirus for Codling Moth Larvae, in Laboratory and Field Experiments. Biocontrol Sci. Technol. 2000, 10, 627–640. [Google Scholar] [CrossRef]
- Knight, A.L.; Basoalto, E.; Witzgall, P. Improving the Performance of the Granulosis Virus of Codling Moth (Lepidoptera: Tortricidae) by Adding the Yeast Saccharomyces cerevisiae with Sugar. Environ. Entomol. 2015, 44, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Witzgall, P.; Proffit, M.; Rozpedowska, E.; Becher, P.G.; Andreadis, S.; Coracini, M.; Lindblom, T.U.T.; Ream, L.J.; Hagman, A.; Bengtsson, M.; et al. “This Is Not an Apple”–Yeast Mutualism in Codling Moth. J. Chem. Ecol. 2012, 38, 949–957. [Google Scholar] [CrossRef] [PubMed]
- Arthurs, S.P.; Hilton, R.; Knight, A.L.; Lacey, L.A. Evaluation of the Pear Ester Kairomone as a Formulation Additive for the Granulovirus of Codling Moth (Lepidoptera: Tortricidae) in Pome Fruit. J. Econ. Entomol. 2007, 100, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Ballard, J.; Ellis, D.; Payne, C. Uptake of Granulovirus from the Surface of Apples and Leaves by First Instar Larvae of the Codling Moth Cydia pomonella L. (Lepidoptera: Olethreutidae). Biocontrol Sci. Technol. 2000, 10, 617–625. [Google Scholar] [CrossRef]
- Light, D.M.; Beck, J.J. Characterization of Microencapsulated Pear Ester, (2E,4Z)-Ethyl-2,4-Decadienoate, a Kairomonal Spray Adjuvant against Neonate Codling Moth Larvae. J. Agric. Food Chem. 2010, 58, 7838–7845. [Google Scholar] [CrossRef]
- Light, D.M.; Beck, J.J. Behavior of Codling Moth (Lepidoptera: Tortricidae) Neonate Larvae on Surfaces Treated with Microencapsulated Pear Ester. Environ. Entomol. 2012, 41, 603–611. [Google Scholar] [CrossRef]
- Stefanini, I. Yeast-Insect Associations: It Takes Guts. Yeast 2018, 35, 315–330. [Google Scholar] [CrossRef]
- Douglas, A.E. Microbial Brokers of Insect-Plant Interactions Revisited. J. Chem. Ecol. 2013, 39, 952–961. [Google Scholar] [CrossRef]
- Giron, D.; Dubreuil, G.; Bennett, A.; Dedeine, F.; Dicke, M.; Dyer, L.A.; Erb, M.; Harris, M.O.; Huguet, E.; Kaloshian, I.; et al. Promises and Challenges in Insect–Plant Interactions. Entomol. Exp. Appl. 2018, 166, 319–343. [Google Scholar] [CrossRef]
- Knight, A.L.; Witzgall, P. Combining Mutualistic Yeast and Pathogenic Virus—A Novel Method for Codling Moth Control. J. Chem. Ecol. 2013, 39, 1019–1026. [Google Scholar] [CrossRef]
- van der Merwe, M.; Jukes, M.D.; Knox, C.; Moore, S.D.; Hill, M.P. Mutualism between Gut-Borne Yeasts and Their Host, Thaumatotibia leucotreta, and Potential Usefulness in Pest Management. Insects 2022, 13, 243. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.D.; Hendry, D.A.; Richards, G.I. Virulence of a South African Isolate of the Cryptophlebia Leucotreta Granulovirus to Thaumatotibia leucotreta Neonate Larvae. BioControl 2011, 56, 341–352. [Google Scholar] [CrossRef]
- Moore, S.D.; Richards, G.I.; Chambers, C.; Hendry, D. An Improved Larval Diet for Commercial Mass Rearing of the False Codling Moth, Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae). Afr. Entomol. 2014, 22, 216–219. [Google Scholar] [CrossRef]
- Lenth, R.V. Estimated Marginal Means, Aka Least-Squares Means [R Package Emmeans Version 1.6. 0]. Comprehensive R Archive Network (CRAN). 2021. Available online: https://cran.r-project.org/web/packages/emmeans/index.html (accessed on 8 October 2023).
- Brooks, M.; Kristensen, K.; van Benthem, K.; Magnusson, A.; Berg, C.; Nielsen, A.; Skaug, H.; Mächler, M.; Bolker, B. GlmmTMB Balances Speed and Flexibility among Packages for Zero-Inflated Generalized Linear Mixed Modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
- Becher, P.G.; Flick, G.; Rozpędowska, E.; Schmidt, A.; Hagman, A.; Lebreton, S.; Larsson, M.C.; Hansson, B.S.; Piškur, J.; Witzgall, P.; et al. Yeast, Not Fruit Volatiles Mediate Drosophila melanogaster Attraction, Oviposition and Development. Funct. Ecol. 2012, 26, 822–828. [Google Scholar] [CrossRef]
- Bellutti, N.; Gallmetzer, A.; Innerebner, G.; Schmidt, S.; Zelger, R.; Koschier, E.H. Dietary Yeast Affects Preference and Performance in Drosophila suzukii. J. Pest Sci. 2018, 91, 651–660. [Google Scholar] [CrossRef]
- Ljunggren, J.; Borrero-Echeverry, F.; Chakraborty, A.; Lindblom, T.U.T.; Hedenström, E.; Karlsson, M.; Witzgall, P.; Bengtsson, M. Yeast Volatomes Differentially Affect Larval Feeding in an Insect Herbivore. Appl. Environ. Microbiol. 2019, 85, e01761-19. [Google Scholar] [CrossRef]
- Lewis, M.T.; Hamby, K.A. Differential Impacts of Yeasts on Feeding Behavior and Development in Larval Drosophila suzukii (Diptera:Drosophilidae). Sci. Rep. 2019, 9, 13370. [Google Scholar] [CrossRef]
- Malassigné, S.; Minard, G.; Vallon, L.; Martin, E.; Valiente Moro, C.; Luis, P. Diversity and Functions of Yeast Communities Associated with Insects. Microorganisms 2021, 9, 1552. [Google Scholar] [CrossRef]
- Davis, T.S.; Crippen, T.L.; Hofstetter, R.W.; Tomberlin, J.K. Microbial Volatile Emissions as Insect Semiochemicals. J. Chem. Ecol. 2013, 39, 840–859. [Google Scholar] [CrossRef]
- Spitaler, U.; Bianchi, F.; Eisenstecken, D.; Castellan, I.; Angeli, S.; Dordevic, N.; Robatscher, P.; Vogel, R.F.; Koschier, E.H.; Schmidt, S. Yeast Species Affects Feeding and Fitness of Drosophila suzukii Adults. J. Pest Sci. 2020, 93, 1295–1309. [Google Scholar] [CrossRef]
- van der Merwe, M. Yeast-Baculovirus Synergism: Investigating Mixed Infections for Improved Management of the False Codling Moth, Thaumatotibia leucotreta. Ph.D. Thesis, Rhodes University, Grahamstown, South Africa, 2018. Available online: http://hdl.handle.net/10962/62963 (accessed on 22 August 2023).
- Gonzalez, F.; Tkaczuk, C.; Dinu, M.M.; Fiedler, Ż.; Vidal, S.; Zchori-Fein, E.; Messelink, G.J. New Opportunities for the Integration of Microorganisms into Biological Pest Control Systems in Greenhouse Crops. J. Pest Sci. 2016, 89, 295–311. [Google Scholar] [CrossRef]
- Madden, A.A.; Epps, M.J.; Fukami, T.; Irwin, R.E.; Sheppard, J.; Sorger, D.M.; Dunn, R.R. The Ecology of Insect-Yeast Relationships and Its Relevance to Human Industry. Proc. Biol. Sci. 2018, 285, 20172733. [Google Scholar] [CrossRef]
- Günther, C.S.; Goddard, M.R. Do Yeasts and Drosophila Interact Just by Chance? Fungal Ecol. 2019, 38, 37–43. [Google Scholar] [CrossRef]
- Knight, A.L.; Basoalto, E.; Yee, W.; Hilton, R.; Kurtzman, C.P. Adding Yeasts with Sugar to Increase the Number of Effective Insecticide Classes to Manage Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in Cherry. Pest Manag. Sci. 2016, 72, 1482–1490. [Google Scholar] [CrossRef] [PubMed]
- Meriggi, N.; Di Paola, M.; Cavalieri, D.; Stefanini, I. Saccharomyces cerevisiae—Insects Association: Impacts, Biogeography, and Extent. Front. Microbiol. 2020, 11, 1629. [Google Scholar] [CrossRef] [PubMed]
- Sieverding, E.; Dirkse, F.; Moneta, P.; Fleute-Schlachter, I. Optimization of agricultural sprays with the adjuvant break-thru S240® with reference to grape diseases. In Giornate Fitopatologiche 2008, Cervia (RA), 12–14 March 2008, Volume 2; Università di Bologna: Bologna, Italy, 2008; pp. 399–406. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van der Merwe, M.; Jukes, M.D.; Knox, C.; Moore, S.D.; Hill, M.P. Naturally Occurring Yeasts Associated with Thaumatotibia leucotreta Can Enhance the Efficacy of the Cryptophlebia Leucotreta Granulovirus. Pathogens 2023, 12, 1237. https://doi.org/10.3390/pathogens12101237
van der Merwe M, Jukes MD, Knox C, Moore SD, Hill MP. Naturally Occurring Yeasts Associated with Thaumatotibia leucotreta Can Enhance the Efficacy of the Cryptophlebia Leucotreta Granulovirus. Pathogens. 2023; 12(10):1237. https://doi.org/10.3390/pathogens12101237
Chicago/Turabian Stylevan der Merwe, Marcel, Michael D. Jukes, Caroline Knox, Sean D. Moore, and Martin P. Hill. 2023. "Naturally Occurring Yeasts Associated with Thaumatotibia leucotreta Can Enhance the Efficacy of the Cryptophlebia Leucotreta Granulovirus" Pathogens 12, no. 10: 1237. https://doi.org/10.3390/pathogens12101237
APA Stylevan der Merwe, M., Jukes, M. D., Knox, C., Moore, S. D., & Hill, M. P. (2023). Naturally Occurring Yeasts Associated with Thaumatotibia leucotreta Can Enhance the Efficacy of the Cryptophlebia Leucotreta Granulovirus. Pathogens, 12(10), 1237. https://doi.org/10.3390/pathogens12101237