Abstract
Heritage buildings pose persistent challenges for documentation and conservation due to their geometric complexity, material heterogeneity, and the fragmentation of spatial and semantic datasets. To address these limitations, this study proposes a geospatially enabled HBIM–GIS framework that integrates hybrid photogrammetric survey data with semantic modeling and spatial analysis to support evidence-based conservation planning. A multi-source acquisition strategy combining terrestrial digital photogrammetry (TDP), Unmanned aerial vehicle digital photogrammetry (UAVDP), and spherical photogrammetry (SP) was employed to capture accurate geometric and semantic information across multiple spatial scales. Staged point-cloud fusion (UAVDP → TDP via ICP; SP → UAV–TDP via SICP) generated a high-density, georeferenced composite, achieving RMS residuals below 0.013 m and resulting in an integrated dataset exceeding 360 million points. From this composite, authoritative 2D drawings and a reality-based 3D HBIM model were developed, while GIS thematic mapping translated heterogeneous observations into structured, queryable layers representing materials, cracks, detachments, deformations, and construction phases. The proposed framework enabled the spatial diagnosis of deterioration mechanisms, revealing moisture-driven decay from plinth to mid-wall and concentrated cracking at openings and architectural transitions; side-to-side cracks accounted for approximately 55% and 65% of mapped fissures on the most affected façades. By embedding these diagnostics as element-level attributes within the HBIM environment, the framework supports precise localization, quantification, and prioritization of conservation interventions, ensuring material-compatible and location-specific decision making. The applicability of the framework is demonstrated through its implementation on a complex historic mosque in Yemen, validating its robustness under constrained access and resource-limited conditions. Overall, the study demonstrates that geospatially integrated HBIM–GIS workflows provide a reproducible, scalable, and transferable solution for the sustainable documentation and conservation of heritage buildings, supporting long-term monitoring and informed management of cultural heritage assets worldwide.