Abstract
Reality-capture has made point clouds a primary spatial data source, yet processing and integration limits hinder their potential. Prior reviews focus on isolated phases; by contrast, Smart Point Clouds (SPCs)—augmenting points with semantics, relations, and query interfaces to enable reasoning—received limited attention. This systematic review synthesizes the state-of-the-art SPC terminology and methods to propose a modular pipeline. Following PRISMA, we searched Scopus, Web of Science, and Google Scholar up to June 2025. We included English-language studies in geomatics and engineering presenting novel SPC methods. Fifty-eight publications met eligibility criteria: Direct (n = 22), Indirect (n = 22), and New Use (n = 14). We formalize an operative SPC definition—queryable, ontology-linked, provenance-aware—and map contributions across traditional point cloud processing stages (from acquisition to modeling). Evidence shows practical value in cultural heritage, urban planning, and AEC/FM via semantic queries, rule checks, and auditable updates. Comparative qualitative analysis reveals cross-study trends: higher and more uniform density stabilizes features but increases computation, and hybrid neuro-symbolic classification improves long-tail consistency; however, methodological heterogeneity precluded quantitative synthesis. We distill a configurable eight-module pipeline and identify open challenges in data at scale, domain transfer, temporal (4D) updates, surface exports, query usability, and sensor fusion. Finally, we recommend lightweight reporting standards to improve discoverability and reuse.