You are currently viewing a new version of our website. To view the old version click .
Buildings
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

30 December 2025

Fire Performance Study of Through Concrete-Filled Steel Tubular Arch Bridges

,
,
,
,
and
1
School of Highway, Chang’an University, Xi’an 710064, China
2
Institute for Health Diagnosis and Control of Large Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
3
School of Highway, Southeast University, Nanjing 210096, China
*
Author to whom correspondence should be addressed.
Buildings2026, 16(1), 173;https://doi.org/10.3390/buildings16010173 
(registering DOI)
This article belongs to the Section Building Structures

Abstract

Advancing rapidly in modern bridge engineering technology, through concrete-filled steel tubular (CFST) arch bridges have achieved widespread application in transportation infrastructure development. Nevertheless, vehicle fires occurring in complicated operational settings may rapidly escalate into major disasters. Fires in oil tankers are particularly dangerous for the safety of bridges. This study examines the fire resistance of through concrete-filled steel tubular (CFST) arch bridges exposed to tanker truck fires. The study formulates a detailed model utilizing Fire Dynamics Simulator (FDS) to simulate fire scenarios, elucidating the spatial temperature distribution characteristics within arch bridge structures. A three-dimensional finite element model established in ABAQUS (Abaqus 2024, Dassault Systèmes Simulia Corp, Providence, RI, USA) is employed to simulate structural responses by analyzing the mechanical behavior of key components under different fire conditions. Practical fire resistance design recommendations for extreme tanker truck fire scenarios are ultimately proposed. Numerical results demonstrate that structural components near the fire source (such as transverse bracings, hangers, and fire-exposed arch surfaces) experience significantly higher temperatures than other regions. Notable temperature gradients developing along hangers and arch ribs in fire-affected zones are observed, while substantial cross-sectional temperature gradients occurring in these components under tanker truck fires reveal their damage evolution mechanisms. The fire exposure scenario at the quarter-point of the midspan is identified as the most critical fire exposure scenario for through CFST arch bridges under tanker truck fires. Under this extreme scenario, the deflection on the fire-exposed side of the global structure exhibits a significant three-stage distribution characteristic: an initial ascending phase around 0–800 s, followed by a sharp descending phase during 800–1100 s, and then a stabilization trend. A fire resistance limit criterion based on component failure (tf3 = 853.43 s) is established, and a global fire resistance limit assessment methodology for through CFST arch bridges under extreme tanker truck scenarios is proposed.

Article Metrics

Citations

Article Access Statistics

Article metric data becomes available approximately 24 hours after publication online.