Abstract
Building energy consumption accounts for a significant portion of total society energy use, and photovoltaic technology is being rapidly deployed across the construction sector. In order to improve the efficiency with which photovoltaic shading devices capture solar energy, a numerical calculation model for the ideal tilt angle of these devices is constructed in this study. This model is based on clear-sky solar radiation calculation algorithms and solar radiation resources across different latitudes. In order to maximize solar radiation collection, an ideal control strategy for photovoltaic shading devices on buildings with varied orientations at different latitudes and in different months is derived through numerical simulations. The findings demonstrate that the building’s orientation has a significant role in determining how well photovoltaic shading systems use solar energy. In winter, the ideal tilt angle for south-facing facades increases by 10° for every 10° increase in latitude. And for every 25° rise in latitude, the ideal tilt angle increases by only around 10° in summer. By applying optimal regulatory strategies, solar radiation consumption efficiency of roughly 65% can be attained, providing a reference basis for boosting power generating efficiency and building energy saving.