Performance and Implication Analysis of Sound Insulation and Ventilation of Trickle Ventilators
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Environment
2.1.1. Ventilation Performance Test
2.1.2. Sound Insulation Performance Testing Experiment
2.2. Description of Trickle Ventilator Samples
2.3. Quantification of Sound Insulation and Ventilation Performance
2.3.1. Tracer Gas Decay Method
2.3.2. Determination of the Flow Coefficient (Cd)
2.3.3. The Element-Normalized Sound Pressure Level Difference ()
2.3.4. Sound Insulation by Combination of Trickle Ventilator and Windows
3. Results
3.1. Influencing Factors of the Tracer Gas Method
3.2. Ventilation Performance by Tracer Gas Method
3.3. Flow Coefficient ()
3.4. Sound Insulation Performance
3.5. Analysis of Combined Sound Insulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| IEQ | Indoor Environment Quality |
| TV | Trickle Ventilator |
| SBS | Sick Building Syndrome |
| CVD | Cardiovascular Disease |
| IAQ | Indoor Air Quality |
| PVC | Polyvinyl Chloride |
| UPVC | Unplasticized Polyvinyl Chloride |
| ACH | Air Change Rate |
| MAPE | Mean Absolute Percentage Error |
| CFD | Computational Fluid Dynamics |
Appendix A

| Straight-Channel Type: A Relatively Short and Linear Airflow Pathway (‘Straight-Channel’ Type Examples) | |||
![]() | ![]() | ![]() | ![]() |
| Labyrinth type: a longer, folded, and more tortuous airflow pathway (‘labyrinth’ type examples) | |||
![]() | ![]() | ![]() | ![]() |
| Type | Window Configuration 1 | 2 (dB) | Thickness 3 (mm) | Window Thickness (mm) |
|---|---|---|---|---|
| W1 | G5 | 28 | 5 | 5 |
| W2 | G6 | 29 | 6 | 6 |
| W3 | G8 | 31 | 8 | 8 |
| W4 | G10 | 32 | 10 | 10 |
| W5 | G12 | 32 | 12 | 12 |
| W6 | G5+A6+G5 | 29 | 16 | 10 |
| W7 | G5+A12+G5 | 30 | 22 | 10 |
| W8 | G5+A18+G5 | 20 | 28 | 10 |
| W9 | G5+A24+G5 | 31 | 34 | 10 |
| W10 | G5+A36+G5 | 32 | 46 | 10 |
| W11 | G5+A72+G5 | 32 | 82 | 10 |
| W12 | G5+A108+G5 | 36 | 118 | 10 |
| W13 | G5+A144+G5 | 39 | 154 | 10 |
| W14 | G5+A6+G5+A6+G5 | 27 | 27 | 15 |
| W15 | G5+A12+G5+A12+G5 | 27 | 39 | 15 |
| W16 | G5+A18+G5+A18+G5 | 28 | 51 | 15 |
| W17 | G5+A24+G5+A24+G5 | 29 | 63 | 15 |
| W18 | G5+P0.38+G5 | 33 | 11 | 10 |
| W19 | G5+P0.76+G5 | 34 | 11 | 10 |
| W20 | G5+P1.14+G5 | 34 | 12 | 10 |
| W21 | G5+P1.52+G5 | 34 | 12 | 10 |

| Influencing Factors | ||
|---|---|---|
| Pearson Correlation Analysis | Sig. (Two-Tailed) | |
| Outdoor CO2 concentration | 0.364 | 0.336 |
| Indoor–outdoor temperature difference | 0.309 | 0.419 |
| Type | (h−1) | (m3·h−1) | (m3·h−1) |
|---|---|---|---|
| TV1-1 | 0.12 | 11.8 | 11.8 |
| 0.11 | 10.8 | ||
| 0.13 | 12.8 | ||
| TV1-2 | 0.13 | 12.8 | 12.4 |
| 0.12 | 11.8 | ||
| 0.13 | 12.8 | ||
| TV2 | 0.14 | 13.7 | 11.8 |
| 0.1 | 9.8 | ||
| 0.12 | 11.8 |

| Type | (Pa) | (m·s−1) | (cm2) | (m3·h−1) |
|---|---|---|---|---|
| TV1-1 | 10 | 1.2 | 23.4 | 9.9 |
| 20 | 2.0 | 17.1 | ||
| 30 | 2.4 | 20.1 | ||
| 40 | 2.9 | 24.6 | ||
| 50 | 3.5 | 29.1 | ||
| TV1-2 | 10 | 1.3 | 23.4 | 10.5 |
| 20 | 2.2 | 18.1 | ||
| 30 | 2.5 | 21.2 | ||
| 40 | 3.1 | 26.1 | ||
| 50 | 3.5 | 29.5 | ||
| TV2 | 10 | 0.7 | 42.6 | 10.0 |
| 20 | 1.3 | 19.9 | ||
| 30 | 1.8 | 27.6 | ||
| 40 | 2.3 | 35.9 | ||
| 50 | 2.9 | 43.7 |
| (dB) | TV1-1 | TV1-2 | TV2 | ||||
|---|---|---|---|---|---|---|---|
| Frequency (Hz) | Open | Closed | Open | Closed | Open | Closed | |
| 100 | 20.2 | 20.1 | 19.8 | 19.7 | 21.8 | 21.5 | |
| 125 | 29.2 | 29.6 | 28.3 | 28.6 | 29.3 | 28.1 | |
| 160 | 32.2 | 33.0 | 31.9 | 33.3 | 32.3 | 32.3 | |
| 200 | 34.6 | 38.3 | 34.8 | 39.1 | 37.5 | 37.8 | |
| 250 | 36.9 | 40.7 | 36.9 | 40.6 | 38.2 | 38.6 | |
| 315 | 34.9 | 40.7 | 34.4 | 40.2 | 35.9 | 36.3 | |
| 400 | 34.1 | 40.7 | 34.2 | 40.0 | 32.9 | 33.3 | |
| 500 | 34.5 | 39.0 | 35.4 | 39.7 | 28.0 | 33.8 | |
| 630 | 32.8 | 38.6 | 33.2 | 38.4 | 31.8 | 38.8 | |
| 800 | 29.8 | 35.0 | 30.5 | 34.6 | 36.4 | 40.6 | |
| 1000 | 28.3 | 33.6 | 28.2 | 32.9 | 37.5 | 40.2 | |
| 1250 | 26.0 | 35.2 | 26.3 | 33.8 | 38.6 | 40.9 | |
| 1600 | 28.3 | 38.4 | 28.6 | 37.9 | 36.6 | 39.6 | |
| 2000 | 30.7 | 41.1 | 31.1 | 40.7 | 36.6 | 41.3 | |
| 2500 | 35.6 | 44.1 | 36.0 | 43.2 | 40.1 | 44.7 | |
| 3150 | 39.1 | 45.0 | 38.9 | 43.7 | 44.2 | 46.4 | |
| 4000 | 42.7 | 45.3 | 42.3 | 44.0 | 45.6 | 46.3 | |
| 5000 | 43.1 | 47.5 | 42.8 | 46.4 | 48.0 | 48.5 | |
| 31 (−1; −2) | 39 (−2; −4) | 31 (−1; −1) | 38 (−1; −4) | 36 (−1; −2) | 40 (−1; −4) | ||
| TV | Sound Insulation Level 1 | |||
|---|---|---|---|---|
| 1-1 | Open | 31 | 29 | 3 |
| 1-2 | Open | 31 | 30 | 4 |
| 2 | Open | 36 | 34 | 5 |
| Type | Ventilation Rate (m3·h−1) | MAPE | |
|---|---|---|---|
| TV1-1 | 9.9 | 11.8 | 18.4% |
| 10.8 | |||
| 12.8 | |||
| TV1-2 | 10.5 | 12.8 | 18.0% |
| 11.8 | |||
| 12.8 | |||
| TV2 | 10.0 | 13.7 | 19.2% |
| 9.8 | |||
| 11.8 | |||
References
- Dai, H.K.; An, Y.; Huang, W.; Chen, C. Design optimization of floor plan for public housing buildings in Hong Kong with consideration of natural ventilation, noise, and daylighting. Build. Environ. 2024, 263, 111865. [Google Scholar] [CrossRef]
- Hu, J.; He, Y.; Hao, X.; Li, N.; Su, Y.; Qu, H. Optimal temperature ranges considering gender differences in thermal comfort, work performance, and sick building syndrome: A winter field study in university classrooms. Energy Build. 2022, 254, 111554. [Google Scholar] [CrossRef]
- Rendón, J.; Giraldo, C.H.; Monyake, K.C.; Alagha, L.; Colorado, H.A. Experimental investigation on composites incorporating rice husk nanoparticles for environmental noise management. J. Environ. Manag. 2023, 325, 116477. [Google Scholar] [CrossRef]
- Sun, B.; Wang, H.; Zhang, Q.; Shi, H.; Mao, H. An energy-based framework for predicting vehicle noise source intensity: From energy consumption to noise. J. Environ. Manag. 2024, 369, 122334. [Google Scholar] [CrossRef]
- Münzel, T.; Sørensen, M.; Daiber, A. Transportation noise pollution and cardiovascular disease. Nat. Rev. Cardiol. 2021, 18, 619–636. [Google Scholar] [CrossRef]
- Dzhambov, A.M.; Lercher, P. Road traffic noise exposure and depression/anxiety: An updated systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2019, 16, 4134. [Google Scholar] [CrossRef]
- World Health Organization. Burden of Disease from Environmental Noise; WHO Regional Office for Europe: Copenhagen, Denmark, 2011; ISBN 978-92-890-0229-5. Available online: https://iris.who.int/handle/10665/326424 (accessed on 26 November 2025).
- Zaporozhets, O.; Fiks, B.; Jagniatinskis, A.; Tokarev, V.; Karpenko, S.; Mickaitis, M. Indoor noise A-level assessment related to the environmental noise spectrum on the building facade. Appl. Acoust. 2022, 185, 108380. [Google Scholar] [CrossRef]
- GB 50118-2010; Code for Design of Sound Insulation of Civil Buildings. China Architecture & Building Press: Beijing, China, 2010. (In Chinese)
- Berardi, U.; Ivona, C.; Stasi, R. Sound insulation improvements in lift-and-slide window systems. Build. Environ. 2025, 282, 113258. [Google Scholar] [CrossRef]
- Baadache, K.; Guedouh, M.S.; Haddad, D. A multi-objective optimization of window surface and glass thickness determination for daylight factor, thermal resistance and acoustic insulation of a test room performances under an overcast sky. J. Build. Eng. 2025, 101, 111717. [Google Scholar] [CrossRef]
- Xu, Z.; Lu, W.; Peng, Z. Enhancing natural ventilation in modular buildings: A reversible Wind Module graph generative design approach. Build. Environ. 2025, 285, 113593. [Google Scholar] [CrossRef]
- Hogan, V.; Macinate, M.; Hassan, H.; Doherty, E.; Wemken, N.; Norton, D.; Foster, D.; Cowie, H.; Coggins, A.M. Deep energy renovations in Irish domestic dwellings; unlocking health benefits. Indoor Built Environ. 2025, 34, 1420326X251371323. [Google Scholar] [CrossRef]
- World Health Organization. WHO Housing and Health Guidelines; WHO Press: Geneva, Switzerland, 2018. [Google Scholar]
- EN 16798-1:2019; Energy Performance of Buildings—Ventilation for Buildings—Part 1: Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics. European Committee for Standardization (CEN): Brussels, Belgium, 2019.
- GB/T 18883-2022; Standards for Indoor Air Quality. State Administration for Market Regulation and Standardization Administration of the People’s Republic of China: Beijing, China, 2022. (In Chinese)
- Biler, A.; Ünlü Tavil, A.; Su, Y.; Khan, N. A review of performance specifications and studies of trickle vents. Buildings 2018, 8, 152. [Google Scholar] [CrossRef]
- Ridley, I.; Fox, J.; Oreszczyn, T. Controllable background ventilation in dwellings—The equivalent opening area needed to achieve appropriate indoor air quality. Int. J. Vent. 2016, 3, 147–154. [Google Scholar] [CrossRef]
- JG/T 233-2017; Ventilator for Windows and Doors of Building. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2017. (In Chinese)
- Coydon, F.; Herkel, S.; Kuber, T.; Pfafferott, J.; Himmelsbach, S. Energy performance of façade-integrated decentralised ventilation systems. Energy Build. 2015, 107, 172–180. [Google Scholar] [CrossRef]
- Kolokotroni, M.; White, M.K.; Perera, M. Trickle ventilators: Field measurements in refurbished offices. Build. Serv. Eng. Res. Technol. 1997, 18, 193–199. [Google Scholar] [CrossRef]
- Karava, P.; Stathopoulos, T.; Athienitis, A.K. Investigation of the performance of trickle ventilators. Build. Environ. 2003, 38, 981–993. [Google Scholar] [CrossRef]
- Nurzyński, J. Acoustic performance of slot ventilators and their effect on the sound insulation of a window. In Proceedings of the INTER-NOISE and NOISE-CON Congress and Conference, Leuven, Belgium, 25–28 August 2003; pp. 890–899. [Google Scholar]
- Choi, Y.; Song, D. How to quantify natural ventilation rate of single-sided ventilation with trickle ventilator? Build. Environ. 2020, 181, 107119. [Google Scholar] [CrossRef]
- Karava, P.; Athienitis, A.K.; Stathopoulos, T. Simulation of the performance of trickle ventilators. In Proceedings of the ESIM Conference, Montreal, QC, Canada, 11–13 September 2002; pp. 1–8. [Google Scholar]
- Boulic, M.; Bombardier, P.; Zaidi, Z.; Russell, A. Using trickle ventilators coupled to fan extractor to achieve a suitable airflow rate in an Australian apartment: A nodal network approach connected to a CFD approach. Energy Build. 2024, 304, 113828. [Google Scholar] [CrossRef]
- Wang, Z.; Yao, L.; Shi, Y.; Zhao, D.; Chen, T. Optimizing the performance of window frames: A comprehensive review of materials in China. Appl. Sci. 2024, 14, 6091. [Google Scholar] [CrossRef]
- Kou, Y.D. Test and analysis of airborne sound insulating properties for building’s external windows and doors. Noise Vib. Control 2013, 33, 115–119. (In Chinese) [Google Scholar] [CrossRef]
- GB/T 18204.1-2013; Examination Methods for Public Places—Part 1: Physical Parameters. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2013. (In Chinese)
- T/CAEPI 38-2021; Technical Requirements for Ventilation and Sound Insulation Windows. China Association of Environmental Protection Industry: Beijing, China, 2021. (In Chinese)
- The Energy Conservatory. US. Available online: https://www.energyconservatory.com/ (accessed on 11 August 2025).
- KIMO Instruments. France. Available online: https://sauermanngroup.com/fr-FR (accessed on 11 August 2025).
- ISO 10140-2:2021; Acoustics—Laboratory Measurement of Sound Insulation of Building Elements—Part 2: Measurement of Airborne Sound Insulation. ISO: Geneva, Switzerland, 2021.
- ISO 12569:2017; Thermal Performance of Buildings and Materials—Determination of Specific Airflow Rate in Buildings—Tracer Gas Dilution Method. ISO: Geneva, Switzerland, 2017.
- Cui, S.; Cohen, M.; Stabat, P.; Marchio, D. CO2 tracer gas concentration decay method for measuring air change rate. Build. Environ. 2015, 84, 162–169. [Google Scholar] [CrossRef]
- T&D Corporation. Japan. Available online: https://www.tandd.co.jp/ (accessed on 11 August 2025).
- Shi, Y.P.; Zou, Z.J.; Huang, C. Test effect of different tracer gases on room ventilation. In Proceedings of the IEHB Conference, Hunan, China, 16–18 November 2012; pp. 267–275. (In Chinese). [Google Scholar]
- ASHRAE. ASHRAE Handbook-Fundamentals-Airflow Around Buildings; ASHRAE: Atlanta, GA, USA, 2025. [Google Scholar]
- Xuan, Z.Q. Study on Measurement and Calculation of Natural Ventilation in Typical Residential Buildings and Its Related Influencing Factors. Master’s Thesis, Southeast University, Jiangsu, China, 2019. (In Chinese). [Google Scholar]
- ISO 717-1:2020; Acoustics—Rating of sound insulation in buildings and of building elements—Part 1: Airborne sound Insulation. ISO: Geneva, Switzerland, 2020.
- Cai, C.; Xu, Y.; Wang, Y.; Wang, Q.; Liu, L. Experimental Study on the Effect of Urban Road Traffic Noise on Heart Rate Variability of Noise-Sensitive People. Front. Psychol. 2022, 12, 749224. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, D.; He, D.; Liu, Y.; Taib, N.; Heng Yii Sern, C. Seasonal thermal performance of double and triple glazed windows with effects of window opening area. Sci. Rep. 2025, 15, 7890. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Chen, S.; Liao, W. Time- and environment-dependent water content distribution in polyvinyl butyral (PVB) laminated glass: Interlayer and interface contributions. J. Build. Eng. 2025, 112, 113659. [Google Scholar] [CrossRef]
- GB 55016-2021; General Code for Building Environment. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2021. (In Chinese)
- Kang, M.; Yan, Y.; Zhang, H.; Guo, C.; Fan, X.; Sekhar, C.; Lian, Z.; Wargocki, P.; Li, L. Associations between bedroom environment and sleep quality when sleeping less or more than 6 h: A cross-sectional study during summer. Build. Environ. 2024, 257, 111531. [Google Scholar] [CrossRef]
- GB 50736-2012; Design Code for Heating Ventilation and Air Conditioning of Civil Buildings. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2012. (In Chinese)
- Løvholt, F.; Norèn-Cosgriff, K.; Madshus, C.; Ellingsen, S.E. Simulating low frequency sound transmission through walls and windows by a two-way coupled fluid structure interaction model. J. Sound Vib. 2017, 396, 203–216. [Google Scholar] [CrossRef]
- Wang, J.; Du, B.; Huang, Y. Experimental study on airborne sound insulation performance of lightweight double leaf panels. Appl. Acoust. 2022, 197, 108907. [Google Scholar] [CrossRef]
- Urbán, D.; Roozen, N.B.; Zaťko, P.; Rychtarikova, M.; Tomašovič, P.; Glorieux, C. Assessment of sound insulation of naturally ventilated double skin facades. Build. Environ. 2016, 110, 148–160. [Google Scholar] [CrossRef]
- Orduña-Bustamante, F.; Velasco-Segura, R.; Quintero, G.; Pérez-Ruiz, S.J.; Pérez-López, A.; Dorantes-Escamilla, R.; Ponce-Patrón, D.R. Simplified vented acoustic window with broadband sound transmission loss. Appl. Acoust. 2024, 217, 109865. [Google Scholar] [CrossRef]
- Roostaee, A.; Khiadani, M.; Mohammed, H.A.; Shafieian, A. Harnessing the power of computational fluid dynamics for flow coefficient and rain resistance improvement of Type 1 Natural Ventilators. J. Build. Eng. 2023, 74, 106844. [Google Scholar] [CrossRef]
- Ye, S.; Shen, X.; Zhang, H.; Liu, X. Simulation analysis and experimental study of pipeline gas resistance modelling and series characteristics. Fluids 2025, 10, 148. [Google Scholar] [CrossRef]
- Shirzadi, M.; Mirzaei, P.A.; Naghashzadegan, M. Development of an adaptive discharge coefficient to improve the accuracy of cross-ventilation airflow calculation in building energy simulation tools. Build. Environ. 2018, 127, 277–290. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, B.; Cui, H.; Huang, M. Improvement of airflow uniformity and noise reduction with optimized V-shape configuration of perforated plate in the air distributor. Indoor Built Environ. 2024, 33, 641–657. [Google Scholar] [CrossRef]
- Zemitis, J.; Bogdanovics, R.; Prozuments, A.; Borodinecs, A. Study of pressure-difference influence on airflow, heat-recovery efficiency and acoustic performance of a local decentralized ventilation device. J. Build. Eng. 2024, 86, 108900. [Google Scholar] [CrossRef]
- Kenchappa, B.; Shivakumar, K. Evaluation of a microporous acoustic liner using advanced noise-control fan engine. Appl. Sci. 2025, 15, 4734. [Google Scholar] [CrossRef]
- Rauscher, T.; Neubauer, R.O.; Zaglauer, M.; Leistner, P. Single-number values versus subjective judgment of airborne sound insulation in dwellings. Build. Acoust. 2023, 30, 91–101. [Google Scholar] [CrossRef]
- Liu, M.; Peng, L.; Fan, Z.; Wang, D. Sound insulation and mechanical properties of wood damping composites. Wood Res. 2019, 64, 743–758. [Google Scholar] [CrossRef]
- He, W.Y.; Yu, J.J.; Wu, W. Study on sound insulation performance of several lightweight partition walls. Sichuan Arch. 2023, 43, 257–262. (In Chinese) [Google Scholar]
- Arjunan, A.; Baroutaji, A.; Robinson, J.; Vance, A.; Arafat, A. Acoustic metamaterials for sound absorption and insulation in buildings. Build. Environ. 2024, 251, 111250. [Google Scholar] [CrossRef]
- Amran, M.; Fediuk, R.; Murali, G.; Vatin, N.; Al-Fakih, A. Sound-absorbing acoustic concretes: A review. Sustainability 2021, 13, 10712. [Google Scholar] [CrossRef]
- Ridley, I.; Davies, M.; Booth, W.; Judd, C.; Oreszczyn, T.; Mumovic, D. Automatic Ventilation Control of Trickle Ventilators. Int. J. Vent. 2016, 5, 417–426. [Google Scholar] [CrossRef]
- Ayoobi, A.W.; Ekimci, B.G.; Inceoğlu, M. A Comparative Study of Sustainable Cooling Approaches: Evaluating the Performance of Natural Ventilation Strategies in Arid and Semi-Arid Regions. Buildings 2024, 14, 3995. [Google Scholar] [CrossRef]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Li, H.; Chen, Z.; Zhao, Z.; Xue, X.; Yan, X.; Zhang, N. Performance and Implication Analysis of Sound Insulation and Ventilation of Trickle Ventilators. Buildings 2025, 15, 4417. https://doi.org/10.3390/buildings15244417
Wang S, Li H, Chen Z, Zhao Z, Xue X, Yan X, Zhang N. Performance and Implication Analysis of Sound Insulation and Ventilation of Trickle Ventilators. Buildings. 2025; 15(24):4417. https://doi.org/10.3390/buildings15244417
Chicago/Turabian StyleWang, Susu, Hui Li, Zhongjie Chen, Ziyun Zhao, Xiaoyan Xue, Xiang Yan, and Nan Zhang. 2025. "Performance and Implication Analysis of Sound Insulation and Ventilation of Trickle Ventilators" Buildings 15, no. 24: 4417. https://doi.org/10.3390/buildings15244417
APA StyleWang, S., Li, H., Chen, Z., Zhao, Z., Xue, X., Yan, X., & Zhang, N. (2025). Performance and Implication Analysis of Sound Insulation and Ventilation of Trickle Ventilators. Buildings, 15(24), 4417. https://doi.org/10.3390/buildings15244417









