The Seismic Background Noise Monitoring and Intelligent Prediction of the Cave Temple Cultural Heritage—A Case Study of Yungang Grottoes
Abstract
1. Introduction
2. Design of a Seismic Prediction Network for Stone Cave Temple Cultural Heritage Sites
2.1. Model Network Design
2.2. Evaluation Indicators
3. Overview and Data of the Study Area
3.1. Tectonic Background of the Study Area
3.2. Processing and Analysis of Seismic Monitoring Data for Cave Temple Cultural Heritage Sites
4. Earthquake Motion Prediction for Cave Temples: Cultural Heritage Based on the TLSA-SO Model
4.1. Analysis of Model Prediction Results
4.2. Model Prediction Accuracy Analysis
4.3. Validation of Model Generalization Capability
4.4. Analysis of the Strengths of the Model and Room for Improvement
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pei, Q.; Liu, H.; Guo, Q.; Zhao, J.; Li, W.; Wang, Y. Research on Earthquake Risk Assessment Methods and Prevention-Control Countermeasures for Complex Disaster-Bearing Structures in Cave Temples—A Case Study of the Maijishan Grottoes. Res. Conserv. Cave Temples Earthen Sites 2024, 3, 64–78. [Google Scholar] [CrossRef]
- Mao, D.; Wang, X.; Meng, J.; Ma, X.; Jiang, X.; Wan, L.; Yan, H.; Fan, Y. Infiltration Assessments on Top of Yungang Grottoes by Time-Lapse Electrical Resistivity Tomography. Hydrology 2022, 9, 77. [Google Scholar] [CrossRef]
- Hu, X.; Wu, R.; Li, Y.; Xie, H.; Zhang, Z.; Hokoi, S.; Su, B. Impact of Opening the Entrance on Cave Temple Murals in Different Climate Zones for Preventive Conservation. Npj Herit. Sci. 2025, 13, 100. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Q.; Zhang, Z.; Guo, Q.; Lin, W.; Gao, W. Rainfall Influence and Risk Analysis on the Mural Deterioration of Dunhuang Mogao Grottoes, China. Herit. Sci. 2023, 11, 176. [Google Scholar] [CrossRef]
- Li, Z. Silk Road Ancient Site Protection. Chin. Cult. Herit. 2004, 3, 118–122. [Google Scholar]
- Wang, J.; Chen, J. Current Situation and Development Analysis of Chinese Grotto Temple Protection. Cult. Southeast 2018, 6–14, 127–128. [Google Scholar]
- Xue, S. Study on the ground motion characteristics of the Mogao grottoes in Dunhuang. Master’s Thesis, Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou, China, 2023. [Google Scholar]
- Xu, C.; Huang, Z.; Gong, A.; Ba, W. Seismic hazard risk assessment for the immovable cultural relics: The national key cultural relics protection units of cave temples and stone. J. Beijing Norm. Univ. (Nat. Sci.) 2023, 59, 449–455. [Google Scholar]
- Guo, X.; Shi, Z.; Lu, J.; Zhu, R. Research on earthquake disaster risk assessment methods for grotto temples: A case study of Yungang Grottoes. Ind. Archit. 2024, 54, 230–239. [Google Scholar]
- Zhang, B. Emergency response measures for stone grottoes affected by earthquakes. Chin. Cult. Herit. 2021, 4, 36–39. [Google Scholar]
- Ge, C.; Zhang, L. Seismic risk evaluation method for Buddhist stone cave temples. Build. Cult. 2013, 104–107. [Google Scholar]
- Larose, E.; Carrière, S.; Voisin, C.; Bottelin, P.; Baillet, L.; Guéguen, P.; Walter, F.; Jongmans, D.; Guillier, B.; Garambois, S.; et al. Environmental Seismology: What Can We Learn on Earth Surface Processes with Ambient Noise? J. Appl. Geophys. 2015, 116, 62–74. [Google Scholar] [CrossRef]
- Schmandt, B.; Gaeuman, D.; Stewart, R.; Hansen, S.M.; Tsai, V.C.; Smith, J. Seismic Array Constraints on Reach-Scale Bedload Transport. Geology 2017, 45, 299–302. [Google Scholar] [CrossRef]
- Cook, K.L.; Dietze, M. Seismic Advances in Process Geomorphology. Annu. Rev. Earth Planet. Sci. 2022, 50, 183–204. [Google Scholar] [CrossRef]
- Burtin, A.; Hovius, N.; Turowski, J.M. Seismic Monitoring of Torrential and Fluvial Processes. Earth Surf. Dyn. 2016, 4, 285–307. [Google Scholar] [CrossRef]
- Allstadt, K.E.; Matoza, R.S.; Lockhart, A.B.; Moran, S.C.; Caplan-Auerbach, J.; Haney, M.M.; Thelen, W.A.; Malone, S.D. Seismic and Acoustic Signatures of Surficial Mass Movements at Volcanoes. J. Volcanol. Geotherm. Res. 2018, 364, 76–106. [Google Scholar] [CrossRef]
- Lai, V.H.; Tsai, V.C.; Lamb, M.P.; Ulizio, T.P.; Beer, A.R. The Seismic Signature of Debris Flows: Flow Mechanics and Early Warning at Montecito, California. Geophys. Res. Lett. 2018, 45, 5528–5535. [Google Scholar] [CrossRef]
- Chmiel, M.; Walter, F.; Wenner, M.; Zhang, Z.; McArdell, B.W.; Hibert, C. Machine Learning Improves Debris Flow Warning. Geophys. Res. Lett. 2021, 48, e2020GL090874. [Google Scholar] [CrossRef]
- Nie, W.; Tian, C.; Song, D.; Liu, X.; Wang, E. Disaster Process and Multisource Information Monitoring and Warning Method for Rainfall-Triggered Landslide: A Case Study in the Southeastern Coastal Area of China. Nat. Hazards 2025, 121, 2535–2564. [Google Scholar] [CrossRef]
- Xu, Z.; Song, S.; Wu, F.; Cao, C.; Ma, M.; Wang, S. Research on the Spatiotemporal Evolution of Deformation and Seismic Dynamic Response Characteristics of High-Steep Loess Slope on the Northeast Edge of the Qinghai-Tibet Plateau. Bull. Eng. Geol. Environ. 2025, 84, 21. [Google Scholar] [CrossRef]
- Xu, Z.; Zhu, Y.; Fan, J.; Zhou, Q.; Gu, D.; Tian, Y. A Spatiotemporal Casualty Assessment Method Caused by Earthquake Falling Debris of Building Clusters Considering Human Emergency Behaviors. Int. J. Disaster Risk Reduct. 2025, 117, 105206. [Google Scholar] [CrossRef]
- Yang, Y. Mechanism and Early Warning of Debris Flows Triggered by Seismic Motion: A Case Study of the Bailong River Basin. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2025. [Google Scholar]
- Yang, J. Parameter Identification and Rapid Damage Assessment of Bridge Clusters Under Strong Seismic Actions Based on Monitoring Data. Ph.D. Thesis, Tongji University, Shanghai, China, 2024. [Google Scholar]
- Wang, H. Research on the Inversion Method of Source Energy Field of Microseismic Monitoring in Mines and Its Application. Master’s Thesis, Zhongyuan University of Technology, Zhengzhou, China, 2025. [Google Scholar]
- Wang, Z. Micro-vibration and Microseismic Signal Monitoring. Ph.D. Thesis, University of Science and Technology of China, Hefei, China, 2025. [Google Scholar]
- Wang, M. Wang Meiyong in Gansu: How Technology Assists the Protection of Grottoes. China Daily, 16 May 2025. [Google Scholar]
- Yin, J.; Denolle, M.A.; He, B. A Multitask Encoder–Decoder to Separate Earthquake and Ambient Noise Signal in Seismograms. Geophys. J. Int. 2022, 231, 1806–1822. [Google Scholar] [CrossRef]
- Havskov, J.; Alguacil, G. Seismic Noise. Instrum. Earthq. Seismol. 2004, 22, 77–85. [Google Scholar] [CrossRef]
- Wang, X.; Ma, S.; Guo, Z. S-wave velocity of the crust in Three Gorges Reservoir and the adjacent region inverted from seismic ambient noise tomography. Chin. J. Geophys. 2013, 56, 4113–4124. (In Chinese) [Google Scholar] [CrossRef]
- Herak, M.; Herak, D. Continuous Monitoring of Dynamic Parameters of the DGFSM Building (Zagreb, Croatia). Bull. Earthq. Eng. 2010, 8, 657–669. [Google Scholar] [CrossRef]
- Clinton, J.F. The Observed Wander of the Natural Frequencies in a Structure. Bull. Seismol. Soc. Am. 2006, 96, 237–257. [Google Scholar] [CrossRef]
- Mainsant, G.; Larose, E.; Brönnimann, C.; Jongmans, D.; Michoud, C.; Jaboyedoff, M. Ambient Seismic Noise Monitoring of a Clay Landslide: Toward Failure Prediction. J. Geophys. Res. Earth Surf. 2012, 117, 2011JF002159. [Google Scholar] [CrossRef]
- Mainsant, G.; Jongmans, D.; Chambon, G.; Larose, E.; Baillet, L. Shear-wave Velocity as an Indicator for Rheological Changes in Clay Materials: Lessons from Laboratory Experiments. Geophys. Res. Lett. 2012, 39, 2012GL053159. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C. Time Series Analysis Forecasting and Control, Revised ed.; Holden Day: San Francisco, CA, USA, 1976; Volume 31, pp. 238–242. [Google Scholar]
- Wang, S.; Zhang, N.; Wu, L.; Wang, Y. Wind Speed Forecasting Based on the Hybrid Ensemble Empirical Mode Decomposition and GA-BP Neural Network Method. Renew. Energy 2016, 94, 629–636. [Google Scholar] [CrossRef]
- Kanai, S.; Fujiwara, Y.; Iwamura, S. Preventing Gradient Explosions in Gated Recurrent Units. In Proceedings of the Advances in Neural Information Processing Systems 30, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Han, Y.; Zhou, R.; Geng, Z.; Chen, K.; Wei, Q. Production Prediction Modeling of Industrial Processes Based on Bi-LSTM. In Proceedings of the 2019 34rd Youth Academic Annual Conference of Chinese Association of Automation (YAC), Jinzhou, China, 6–8 June 2019. [Google Scholar]
- Jaidee, S.; Pora, W. Very Short-Term Solar Power Forecasting Using Genetic Algorithm Based Deep Neural Network. In Proceedings of the International Conference on Information Technology, Saratov, Russia, 7–8 February 2019. [Google Scholar]
- Xia, M.; Zheng, X.; Imran, M.; Shoaib, M. Data-Driven Prognosis Method Using Hybrid Deep Recurrent Neural Network. Appl. Soft Comput. 2020, 93, 106351. [Google Scholar] [CrossRef]
- Qi, Q.; Gao, J.; Chen, H.; Gao, Z.; Huang, Y.; Chen, J.; Cao, Y.; Wang, J. Semi-supervised seismic attenuation compensation method based on GRU dominated deep netural network. Chin. J. Geophys. 2023, 66, 2997–3010. (In Chinese) [Google Scholar]
- Zhang, H.; Melgar, D.; Sahakian, V.; Searcy, J.; Lin, J.-T. Learning Source, Path and Site Effects: CNN-Based on-Site Intensity Prediction for Earthquake Early Warning. Geophys. J. Int. 2022, 231, 2186–2204. [Google Scholar] [CrossRef]
- Wu, Q.; Guan, F.; Lv, C.; Huang, Y. Ultra-Short-Term Multi-Step Wind Power Forecasting Based on CNN-LSTM. IET Renew. Power Gener. 2021, 15, 1019–1029. [Google Scholar] [CrossRef]
- Alizadeh, B.; Bafti, A.G.; Kamangir, H.; Zhang, Y.; Wright, D.B.; Franz, K.J. A Novel Attention-Based LSTM Cell Post-Processor Coupled with Bayesian Optimization for Streamow Prediction. J. Hydrol. 2021, 601, 126526. [Google Scholar] [CrossRef]
- Wen, C.; Tian, H.; Zeng, X.; Xia, X.; Hu, X.; Pang, B. Landslide Deformation Analysis and Prediction with a VMD-SA-LSTM Combined Model. Water 2024, 16, 2945. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, D.; Lin, G.; Tian, S.; Zhang, H.; Wang, Y. Prediction of Mechanical Characteristics of Shearer Intelligent Cables under Bending Conditions. PLoS ONE 2025, 20, e0318767. [Google Scholar] [CrossRef]
- Bai, S.; Kolter, J.Z.; Koltun, V. Trellis Networks for Sequence Modeling. arXiv 2018, arXiv:1810.06682. [Google Scholar]
- Zhang, Y.; Shu, Q.; Ding, F.; Liu, F.; Jiang, S.; Wu, W. Incorporated Flexible Load Forecasting Based on Non-Intrusive Load Monitoring: A TCN-Based Meta Learning Approach. Front. Energy Res. 2025, 13, 1519053. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Orsel, O.E.; Yamada, S.S. Comparative Study of Machine Learning Models for Stock Price Prediction. arXiv 2022, arXiv:2202.03156v1. [Google Scholar] [CrossRef]
- Wei, B.; Jun, Y.; Yulei, R.; Boris, P. A Deep Learning Framework for Financial Time Series Using Stacked Autoencoders and Long-Short Term Memory. PLoS ONE 2017, 12, e0180944. [Google Scholar]
- Fischer, T.; Krauss, C. Deep Learning with Long Short-Term Memory Networks for Financial Market Predictions. Eur. J. Oper. Res. 2017, 270, 654–669. [Google Scholar] [CrossRef]
- Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-Local Neural Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual Attention Network for Scene Segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Zhang, H.; Goodfellow, I.; Metaxas, D.; Odena, A. Self-Attention Generative Adversarial Networks. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019. [Google Scholar]
- Yuan, Y.; Huang, L.; Guo, J.; Zhang, C.; Chen, X.; Wang, J. OCNet: Object Context for Semantic Segmentation. Int. J. Comput. Vis. 2021, 129, 2375–2398. [Google Scholar] [CrossRef]
- Bello, I.; Zoph, B.; Le, Q.; Vaswani, A.; Shlens, J. Attention Augmented Convolutional Networks. arXiv 2020, arXiv:1904.09925v5. [Google Scholar] [CrossRef]
- Hashim, F.A.; Hussien, A.G. Snake Optimizer: A Novel Meta-Heuristic Optimization Algorithm. Knowledge-Based Syst. 2022, 242, 108320. [Google Scholar] [CrossRef]
- Li, J.; Liu, R.; He, Y.; Zhang, C.; Geng, J. VMD and SO-optimized SVM for Fault Diagnosis of Fiber-Optic Composite Submarine Cable. Electron. Meas. Technol. 2023, 46, 8–15. [Google Scholar] [CrossRef]
- Chen, J.; Liu, X.; Wang, J.; Zhang, Y.; Zhu, J. A SO-CNN-based Visible Light Indoor Positioning Optimization Method. Electron. Technol. 2024, 64, 702–708. [Google Scholar] [CrossRef]
- Xin, H.; Zhang, H.; Kang, M.; He, R.; Gao, L.; Gao, J. High-Resolution Lithospheric Velocity Structure of Continental China by Double-Difference Seismic Travel-Time Tomography. Seismol. Res. Lett. 2019, 90, 229–241. [Google Scholar] [CrossRef]
- Xie, X.; Zhan, Y.; Zhou, L.; Peng, S. Fault Extension Characteristics of the Middle Section of Shanxi Graben System and the Seismogenic Environments of the Hongdong and Linfen Earthquakes. Remote Sens. 2023, 15, 4792. [Google Scholar] [CrossRef]
- Yang, C.; Lu, Z.; Zhang, Q.; Liu, R.; Ji, L.; Zhao, C. Ground Deformation and Fissure Activity in Datong Basin, China 2007–2010 Revealed by Multi-Track InSAR. Geomat. Nat. Hazards Risk 2019, 10, 465–482. [Google Scholar] [CrossRef]
- Assie, K.R.; Wang, Y.; Tranos, M.D.; Ma, H.; Kouamelan, K.S.; Brantson, E.T.; Zhou, L.; Ketchaya, Y.B. Late Cenozoic Faulting Deformation of the Fanshi Basin (Northern Shanxi Rift, China), Inferred from Palaeostress Analysis of Mesoscale Fault-Slip Data. Geol. Mag. 2022, 159, 2306–2322. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, Z.; Dai, L.; Wang, S.; Shi, C. The Incompatible Deformation Mechanism of Underground Tunnels Crossing Fault Conditions in the Southwest Edge Strong Seismic Zone of the Qinghai-Tibet Plateau: A Study of Shaking Table Test. Soil Dyn. Earthq. Eng. 2025, 197, 109482. [Google Scholar] [CrossRef]
- Wang, M.; Fang, Z.; Li, X.; Kang, J.; Wei, Y.; Wang, S.; Zheng, Y.; Zhang, X.; Liu, T. Research on the Prediction Method of 3D Surface Deformation in Filling Mining Based on InSAR-IPIM. Energy Sci. Eng. 2025, 13, 2401–2414. [Google Scholar] [CrossRef]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Zhang, N.; Yin, W. The Seismic Background Noise Monitoring and Intelligent Prediction of the Cave Temple Cultural Heritage—A Case Study of Yungang Grottoes. Buildings 2025, 15, 3892. https://doi.org/10.3390/buildings15213892
Luo Y, Zhang N, Yin W. The Seismic Background Noise Monitoring and Intelligent Prediction of the Cave Temple Cultural Heritage—A Case Study of Yungang Grottoes. Buildings. 2025; 15(21):3892. https://doi.org/10.3390/buildings15213892
Chicago/Turabian StyleLuo, Yong, Na Zhang, and Weiwei Yin. 2025. "The Seismic Background Noise Monitoring and Intelligent Prediction of the Cave Temple Cultural Heritage—A Case Study of Yungang Grottoes" Buildings 15, no. 21: 3892. https://doi.org/10.3390/buildings15213892
APA StyleLuo, Y., Zhang, N., & Yin, W. (2025). The Seismic Background Noise Monitoring and Intelligent Prediction of the Cave Temple Cultural Heritage—A Case Study of Yungang Grottoes. Buildings, 15(21), 3892. https://doi.org/10.3390/buildings15213892
