Implementation of a Novel Bioclimatic-Passive Architecture Concept in Serbian and Polish Residential Building Sectors
Abstract
1. Introduction
1.1. Literature Review
1.2. State-of-the-Art
2. Materials and Methods
2.1. Building Model
2.2. People Occupancy and Thermo-Technical Systems
2.3. Location Parameters
2.4. Analyzed Scenarios
2.5. Mathematical Model
2.5.1. Space Heating
2.5.2. Space Cooling
2.5.3. Energy Indicators
2.5.4. Environmental Indicators
2.5.5. Economic Indicators
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Nomenclature: | ||
A | Area | [m2] |
a | Ground albedo | [-] |
BSC | Bioshading coefficients | [-] |
c | Wind speed | [m/s] |
COP | Coefficient of performance | [-] |
cosZ | Solar incident angle on the horizontal plane | [rad] |
cosβ | Solar incident angle for the passive Trombe wall | [rad] |
cp | Specific heat | [J/kgK] |
D | Wind direction | [°] |
d | Transmissivity | [-] |
E | Energy | [kWh] |
e | Specific energy | [kWh/m2] |
el | Elevation | [m] |
f | Form factor | [1/m] |
g | Specific CO2 emission | [kg/kWh] |
H | Solar irradiance on the horizontal plane | [W/m2] |
h | Heat transfer coefficient | [W/m2K] |
M | CO2 emissions | [kg] |
m | Mass | [kg] |
n | Specific air change | [m3/h/m2] |
p | Specific people indicator | [m2/per] |
PB | Payback period | [years] |
Q | Power | [W] |
q | Specific metabolic activities | [W/per] |
R | Primary conversion factor | [-] |
S | Energy savings | [%] |
SR | Solar reflectance | [-] |
ST | Solar transmittance | [-] |
T | Absolute temperature | [K] |
t | Temperature | [°C] |
tz | Time zone | [h] |
U | Heat transfer coefficient | [W/m2K] |
V | Volume | [m3] |
VF | View factor | [-] |
WW | Window–wall ratio | [%] |
Y | Costs | [EUR] |
y | Specific costs | [EUR/kWh] |
Greek letters: | ||
α | Absorptance | [-] |
β | Inclination angle | [-] |
Δ | Temperature difference | [°C] |
δ | Thickness | [mm] |
ε | Emissivity | [-] |
η | Thermal efficiency | [-] |
θ | Longitude | [°] |
λ | Thermal conductivity | [W/mK] |
ρ | Density | [kg/m3] |
τ | Time period | [h] |
Φ | Latitude | [°] |
φ | Relative humidity | [%] |
Subscripts: | ||
abs | Absorbed | |
acu | Air-conditioned unit | |
after | After implementation | |
air | Air | |
beam | Beam | |
before | Before implementation | |
cool | Space cooling | |
CO2 | Greenhouse gases | |
DG | Double-glazing | |
diff | Diffuse | |
ed | External door | |
edg | Edges | |
eel | Electric equipment and lighting | |
efl | External floor | |
el | Electricity | |
emb | Embodied | |
ew | External wall | |
fin | Final | |
fl | Floor | |
fr | Flat roof | |
frn | Front | |
full | Full | |
GL | Glazing layer | |
GL1 | Glazing layer 1 | |
GL2 | Glazing layer 2 | |
GL3 | Glazing layer 3 | |
heat | Space heating | |
ihg | Internal heat gains | |
inv | Investment | |
loss | Losses | |
MW | Massive wall | |
PER | Pergolas | |
pl | People | |
POL | Poland | |
pry | Primary | |
rad | Radiator | |
refl | Reflection | |
SC | Selective coating | |
SG | Single-glazing | |
SRB | Serbia | |
SUN | Sun | |
TG | Triple-glazing | |
tot | Total | |
use | Useful | |
wd | Wind | |
wh | Water heating | |
ww | Window | |
Abbreviation: | ||
ATW | Active Trombe wall | |
BR1 | Bedroom 1 | |
BR2 | Bedroom 2 | |
BT | Bathroom | |
H1 | Hall 1 | |
H2 | Hall 2 | |
K | Kitchen | |
LR | Living room | |
np | Not possible | |
PCM | Phase change material | |
PTW | Passive Trombe wall | |
RESs | Renewable energy sources | |
RBS | Residential building sector | |
S | Staircase | |
SR | Study room | |
T | Toilet | |
TW | Trombe wall | |
TZ | Thermal zone | |
Z1 | Shading zone | |
Z2 | Sun-exposed zone |
References
- Vijayan, D.S.; Sivasuriyan, A.; Patchamuthu, P.; Jayaseelan, R. Thermal performance of energy-efficient buildings for sustainable development. Environ. Sci. Pollut. Res. 2022, 29, 51130–51142. [Google Scholar] [CrossRef] [PubMed]
- Majewski, G.; Telejko, M.; Orman, Ł.J. Preliminary results of thermal comfort analysis in selected buildings. E3S Web Conf. 2017, 17, 00056. [Google Scholar] [CrossRef]
- Gan, V.J.; Lo, I.M.; Ma, J.; Tse, K.T.; Cheng, J.C.; Chan, C.M. Simulation optimisation towards energy efficient green buildings: Current status and future trends. J. Clean. Prod. 2020, 254, 120012. [Google Scholar] [CrossRef]
- Lewandowski, K. Modern energy sources for sustainable buildings: Innovations and energy efficiency in green construction. Energies 2025, 18, 1121. [Google Scholar] [CrossRef]
- Ma, Z.; Awan, M.B.; Lu, M.; Li, S.; Aziz, M.S.; Zhou, X.; Du, H.; Sha, X.; Li, Y. An overview of emerging and sustainable technologies for increased energy efficiency and carbon emission mitigation in buildings. Buildings 2023, 13, 2658. [Google Scholar] [CrossRef]
- Contreras, G.S.; Lezcano, R.A.G.; Fernández, E.J.L.; Concepción, M.; Gutiérrez, P. Architecture learns from nature: The influence of biomimicry and biophilic design in building. Mod. Appl. Sci. 2023, 17, 58. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. Energy efficiency or conservation for mitigating climate change? Energies 2019, 12, 3543. [Google Scholar] [CrossRef]
- Nešović, A.; Kowalik, R.; Bojović, M.; Janaszek, A.; Adamczak, S. Elevational Earth-Sheltered Buildings with Horizontal Overhang Photovoltaic-Integrated Panels—New Energy-Plus Building Concept in the Territory of Serbia. Energies 2024, 17, 2100. [Google Scholar] [CrossRef]
- Nagaraju, D.; Mendu, S.S.; Chinta, N.D. A numerical approach to design building envelope for energy efficient building. Int. J. Interact. Des. Manuf. 2025, 19, 199–218. [Google Scholar] [CrossRef]
- Anselm, A.J. Earth shelters: A review of energy conservation properties in earth sheltered housing. Energy Conserv. 2012, 31, 125–148. [Google Scholar]
- Radek, N.; Pietraszek, J.; Gądek-Moszczak, A.; Orman, Ł.J.; Szczotok, A. The Morphology and Mechanical Properties of ESD Coatings before and after Laser Beam Machining. Materials 2020, 13, 2331. [Google Scholar] [CrossRef]
- Bulmez, A.M.; Brezeanu, A.I.; Dragomir, G.; Fratu, M.; Iordan, N.F.; Bolocan, S.I.; Rozorea, L.; Popa, E.C.; Năstase, G. CFD analysis for a new Trombe wall concept. Buildings 2024, 14, 579. [Google Scholar] [CrossRef]
- Briga Sá, A.C.; Martins, A.; Boaventura-Cunha, J.; Lanzinha, J.C.; Paiva, A. An analytical approach to assess the influence of the massive wall material, thickness and ventilation system on the Trombe wall thermal performance. J. Build. Phys. 2018, 41, 445–468. [Google Scholar] [CrossRef]
- Ghamari, M.; Sundaram, S. Solar wall technology and its impact on building performance. Energies 2024, 17, 1075. [Google Scholar] [CrossRef]
- Prozuments, A.; Borodinecs, A.; Bebre, G.; Bajare, D. A review on Trombe wall technology feasibility and applications. Sustainability 2023, 15, 3914. [Google Scholar] [CrossRef]
- Mokni, A.; Lashin, A.; Ammar, M.; Mhiri, H. Thermal analysis of a Trombe wall in various climatic conditions: An experimental study. Sol. Energy 2022, 243, 247–263. [Google Scholar] [CrossRef]
- Xiao, Y.; Yang, Q.; Fei, F.; Li, K.; Jiang, Y.; Zhang, Y.; Ma, Q. Review of Trombe wall technology: Trends in optimization. Renew. Sustain. Energy Rev. 2024, 200, 114503. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, J.; Liu, F.; Li, H.; Dong, Z.; Zhang, X.; Tian, C. Interaction effect of room size and opening on Trombe wall performance in Sichuan–Tibet alpine valley areas. Appl. Sci. 2022, 12, 5260. [Google Scholar] [CrossRef]
- Ahmed, O.K. Recent advances in photovoltaic-Trombe wall system: A review. Renew. Energy Technol. Appl. 2020. [Google Scholar]
- Wu, S.Y.; Zheng, H.; Xiao, L. Effect of forced ventilation strategy on the thermal performance of finned-Trombe wall. J. Build. Eng. 2024, 87, 109021. [Google Scholar] [CrossRef]
- Yedder, R.B.; Du, Z.G.; Bilgen, E. Numerical study of laminar natural convection in composite Trombe wall systems. Sol. Wind Technol. 1990, 7, 675–683. [Google Scholar] [CrossRef]
- Ormiston, S.J.; Raithby, G.D.; Hollands, K.G.T. Numerical predictions of natural convection in a Trombe wall system. Int. J. Heat Mass Transf. 1986, 29, 869–877. [Google Scholar] [CrossRef]
- Mo, W.; Zhang, G.; Yao, X.; Li, Q.; DeBacker, B.J. Assessment of passive solar heating systems’ energy-saving potential across varied climatic conditions: The development of the passive solar heating indicator (PSHI). Buildings 2024, 14, 1364. [Google Scholar] [CrossRef]
- Gil-Martín, L.M.; Gómez-Guzmán, A.; Peña-García, A. Use of diffusers materials to improve the homogeneity of sunlight under pergolas installed in road tunnels portals for energy savings. Tunn. Undergr. Space Technol. 2015, 48, 123–128. [Google Scholar] [CrossRef]
- Inuthai, J. Flowering and fruiting phenology of herbs, climbers, shrubs, and trees in the deciduous dipterocarp forest of Northern Thailand. J. Ecol. Environ. 2023, 47, 134–145. [Google Scholar] [CrossRef]
- Hunter, A.M.; Williams, N.S.; Rayner, J.P.; Aye, L.; Hes, D.; Livesley, S.J. Quantifying the thermal performance of green façades: A critical review. Ecol. Eng. 2014, 63, 102–113. [Google Scholar] [CrossRef]
- Lee, L.S.; Jim, C.Y. Multidimensional analysis of temporal and layered microclimatic behavior of subtropical climber green walls in summer. Urban Ecosyst. 2020, 23, 389–402. [Google Scholar] [CrossRef]
- Ip, K.; Lam, M.; Miller, A. Shading performance of a vertical deciduous climbing plant canopy. Build. Environ. 2010, 45, 81–88. [Google Scholar] [CrossRef]
- de Oliveira, M.J.M. Towards a bio-shading system concept design methodology. Ph.D. Thesis, ISCTE-Instituto Universitário de Lisboa, Lisbon, Portugal, 2019. [Google Scholar]
- Dragićević, S.M.; Lambić, M.R. Numerical study of a modified Trombe wall solar collector system. Therm. Sci. 2009, 13, 195–204. [Google Scholar] [CrossRef]
- Dragićević, S.; Lambic, M. Influence of constructive and operating parameters on a modified Trombe wall efficiency. Arch. Civ. Mech. Eng. 2011, 11, 825–838. [Google Scholar] [CrossRef]
- Malešević, J.; Milovanović, M.; Đorđević, S.; Bojic, M.; Lukic, N. The influence of the Trombe wall on energy consumption for heating and cooling of net zero energy house. In Proceedings of the 7th International Quality Conference, Kragujevac, Serbia, 24 May 2013; pp. 237–247. [Google Scholar]
- Bojić, M.; Johannes, K.; Kuznik, F. Optimizing energy and environmental performance of passive Trombe wall. Energy Build. 2014, 70, 279–286. [Google Scholar] [CrossRef]
- Bajc, T.; Todorović, M.N.; Svorcan, J. CFD analyses for passive house with Trombe wall and impact to energy demand. Energy Build. 2015, 98, 39–44. [Google Scholar] [CrossRef]
- Randjelovic, D.; Vasov, M.; Ignjatovic, M.; Stojiljkovic, M.; Bogdanovic, V. Investigation of a passive design approach for a building facility: A case study. Energy Sources Part A Recover. Util. Environ. Eff. 2025, 47, 8890–8908. [Google Scholar] [CrossRef]
- Vukadinović, A.; Radosavljević, J.; Đorðević, A. Impact of green roofing on the energy performance of a detached passive residential building with a Trombe wall. Ann. Fac. Eng. Hunedoara 2022, 20, 99–102. [Google Scholar]
- Šetrajčić, J.; Vučenović, S.; Vojnović, N.; Ilić, D. Simulation of the insulation properties by modification of the Trombe wall. Innov. Mech. Eng. 2023, 2, 79–88.unspecified. [Google Scholar]
- Nešović, A.; Cvetković, D. Traditional Serbian Country Cottage Equipped With The Passive Trombe Wall. Agric. Eng. 2024, 49, 43–51. [Google Scholar] [CrossRef]
- Szyszka, J.; Kogut, J.; Skrzypczak, I.; Kokoszka, W. Selective internal heat distribution in modified Trombe wall. IOP Conf. Ser. Earth Environ. Sci. 2017, 95, 042018. [Google Scholar] [CrossRef]
- Błotny, J.; Nemś, M. Analysis of the impact of the construction of a Trombe wall on the thermal comfort in a building located in Wrocław, Poland. Atmosphere 2019, 10, 761. [Google Scholar] [CrossRef]
- Szyszka, J. Experimental evaluation of the heat balance of an interactive glass wall in a heating season. Energies 2020, 13, 632. [Google Scholar] [CrossRef]
- Oltarzewska, A.; Krawczyk, D.A. Trombe walls–characteristic, overview and simple case study for different climate conditions. In IOP Conf. Ser. Earth Environ. Sci. 2021, 943, 012027. [Google Scholar]
- Lichołai, L.; Starakiewicz, A.; Krasoń, J.; Miąsik, P. The influence of glazing on the functioning of a Trombe wall containing a phase change material. Energies 2021, 14, 5243. [Google Scholar] [CrossRef]
- Szyszka, J. From direct solar gain to Trombe wall: An overview on past, present and future developments. Energies 2022, 15, 8956. [Google Scholar] [CrossRef]
- Szyszka, J.; Bevilacqua, P.; Bruno, R. A statistical analysis of an innovative concept of Trombe wall by experimental tests. J. Build. Eng. 2022, 62, 105382. [Google Scholar] [CrossRef]
- Dyda, M.; Laudy, A.; Decewicz, P.; Romaniuk, K.; Ciezkowska, M.; Szajewska, A.; Skłodowska, A. Diversity of biodeteriorative bacterial and fungal consortia in winter and summer on historical sandstone of the northern Pergola, Museum of King John III’s Palace at Wilanow, Poland. Appl. Sci. 2021, 11, 620. [Google Scholar] [CrossRef]
- Kopeć, W.; Hanus-Fajerska, E.; Bylina, L. Conceptual design of an urban pocket park located in the site of the occurrence of a nineteenth-century chapel using representatives of local xerothermic vegetation. Environ. 2024, 11, 252. [Google Scholar] [CrossRef]
- Kozłowska, I. Eco-strategies for urban space in historic cities. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 102031. [Google Scholar] [CrossRef]
- Babota, F.; Manea, D.L.; Aciu, C.; Munteanu, C.; Cobîrzan, N.; Tămaș-Gavrea, D.R. Determination of optimal dimensions of fixed shadowing systems (pergolas) to reduce energy consumption in buildings in Romania. Procedia Manuf. 2018, 22, 358–363. [Google Scholar] [CrossRef]
- Sadevi, K.K.; Agrawal, A. A study on roof design strategies for energy conservation in Indian buildings. In Proceedings of the International Conference of Architectural Science Association 2019, Roorkee, India, 28–30 November 2019; pp. 781–790. [Google Scholar]
- Alshikh, Z.; Trepci, E.; Rodriguez-Ubinas, E. Sustainable off-site construction in desert environments: Zero-energy houses as case studies. Sustainability 2023, 15, 11909. [Google Scholar] [CrossRef]
- Verheijen, J.; Sans Mateu, O.; Schutten, J.; Zaghal, K. Reducing heat stress with pergolas: Innovative shade solutions for comfortable spaces. Bachelor’s Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2024. [Google Scholar]
- Dimitrijević-Jovanović, D.; Živković, P.; Stevanović, Ž. The impact of the building envelope with the green living systems on the built environment. Therm. Sci. 2018, 22 (Suppl. S4), 1033–1045. [Google Scholar] [CrossRef]
- Savić, S.; Krstić, H.; Šećerov, I.; Dunjić, J. Decreasing the energy demand in public buildings using nature-based solutions: Case studies from Novi Sad (Republic of Serbia) and Osijek (Republic of Croatia). Energy Sustain. Soc. 2024, 14, 23. [Google Scholar] [CrossRef]
- Jovanović, D.D.; Vasov, M.; Momčilović, A.; Živković, P.; Kostadinović, D. Ventilated green facades as a passive design strategy. Innov. Mech. Eng. 2022, 1, 70–84. [Google Scholar]
- Stevović, I.; Jovanović, J.; Hadrović, S. Green buildings, energy efficiency and raising awareness about environmental protection. In Proceedings of the 9th International Conference, Contemporary Achievements in Civil Engineering, University of Novi Sad, Subotica, Serbia, 25–26 April 2024; pp. 576–584. [Google Scholar]
- Seyrek Şık, C.I.; Woźniczka, A.; Widera, B. A conceptual framework for the design of energy-efficient vertical green façades. Energies 2022, 15, 8069. [Google Scholar] [CrossRef]
- Costa, P.; James, R.W. Constructive use of vegetation in office buildings. Proc. Plants for People Symp. 1995, 23, 1–23. [Google Scholar]
- Skórzewski, W. Potential of using greenery to reduce overheating of buildings in Polish climate conditions. Sci. Rev. Eng. Environ. Sci. 2019, 28, 486. [Google Scholar] [CrossRef]
- Petschek, P.; Gass, S. (Eds.) Constructing Shadows: Pergolas, Pavilions, Tents, Cables, and Plants; Walter de Gruyter: Berlin, Germany, 2012. [Google Scholar]
- Grabowiecki, K.; Jaworski, A.; Niewczas, T.; Belleri, A. Green solutions—Climbing vegetation impact on building–energy balance element. Energy Procedia 2017, 111, 377–386. [Google Scholar] [CrossRef]
- Kaczorek, D.; Bekierski, D. Implementation of the EPBD in Poland—Status in 2020. Available online: https://confluence.external-share.com/content/18675/ca_epbd_v_database_2020_(public)/1861813055/2181701270 (accessed on 22 November 2024).
- Ministry of Construction Transport and Infrastructure of Serbia. Rulebook of Energy Efficiency. Available online: https://www.mgsi.gov.rs (accessed on 14 June 2024).
- 2005 ASHRAE Handbook of Fundamentals; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2005.
- Lighting Handbook: Reference & Application, 8th ed.; Illuminating Engineering Society of North America: New York, NY, USA, 1993; p. 355.
- Electricity & Electrical Appliances Handbook; Arco Pub. Co: New York, NY, USA, 1976.
- EnergyPlus Software. Engineering Reference. Available online: https://energyplus.net (accessed on 10 June 2024).
- Poiss, M.; Briefer, A.; Scharf, B.; Spörl, P.; Stangl, R. Vertical greenery as natural shading of glass facades: Bioshading coefficients for 4 climbing plant species for assessment of shading performance. Build. Environ. 2025, 283, 113399. [Google Scholar] [CrossRef]
- Climate OneBuilding. Available online: https://climate.onebuilding.org/ (accessed on 23 November 2024).
- Hammond, G.; Jones, C. Embodied energy and carbon in construction materials. Proc. Inst. Civ. Eng. Energy 2008, 161, 87–98. [Google Scholar] [CrossRef]
- Balaras, C.A.; Dascalaki, E.G.; Psarra, I.; Cholewa, T. Primary energy factors for electricity production in Europe. Energies 2020, 16, 93. [Google Scholar] [CrossRef]
- Statista. CO2 Emission for Electricity in Poland. Available online: https://www.statista.com/statistics/1291750/carbon-intensity-power-sector-eu-country/ (accessed on 23 November 2024).
- Serbian Electricity Industry. Available online: https://www.eps.rs (accessed on 25 November 2024).
- Electricity Prices in Poland. Available online: http://cena-pradu.pl (accessed on 25 November 2024).
- Kowalik, R.; Nešović, A.; Cvetković, D.; Janaszek, A.; Kozłowski, T. Numerical Simulation of Climate Change Impact on Energy, Environmental and Economic Performances of Small Single-Family Houses Equipped with Trombe Walls and Fixed Horizontal Overhangs. Energies 2024, 17, 6275. [Google Scholar] [CrossRef]
Classification Criteria | Types |
---|---|
Material | Wood, Aluminum, PVC, Wrought iron, Glass, and Recycled |
Space position | Horizontal, Vertical, Inclined, and Criss/cross |
Visibility | Open, Semi-open, and Closed |
Profile shape | Rectangular, Square, Oval, Round, and Aero |
Application area | External and Internal |
Mobility | Mobile and Immobile |
Building element | Wall, Roof, and Combined |
Installation location | Terraces, Balconies, Gardens, and Cafes |
Model Type | Model Description | TW Description | Main Results | Year | Source |
---|---|---|---|---|---|
Mathematical | Steady-state, One-dimensional | Double-glazing, Four operation modes | η = 57.19% | 2009 | [30] |
2011 | [31] | ||||
Numerical | EnergyPlus, Weather file for Belgrade | Triple-glazing, Vertical position, Inclined position, Combined position | - eheat,fin = 118.52 kWh/m2, eheat,fin =106.77 kWh/m2, eheat,fin =104.24 kWh/m2 | 2013 | [32] |
Numerical | EnergyPlus, Weather file for Lion | “Mozart” house, Double-glazing with shade | Sheat,fin = 20%, PB = 8 years | 2014 | [33] |
Numerical | Ansys FLUENT, Three-dimensional, Weather file for Belgrade | Single-glazing, Five operation modes | tTZ = 14.7 °C (in winter), tTZ = 29.8 °C (in summer) | 2015 | [34] |
Numerical | EnergyPlus, jEplus, Weather file for Niš | Thermal mass (three types), Convection (two types), Glazing (three types) | Sheat,fin = 77% | 2021 | [35] |
Numerical * | EnergyPlus, Weather file for Niš | Double-glazing, Green roof (three types) | Sheat,fin = 3.4% | 2022 | [36] |
Numerical | MATLAB 2022, One-dimensional | Thermal mass (three types), Insulation (two types) | There is no significant difference | 2023 | [37] |
Numerical | EnergyPlus, Weather file for Kragujevac | Country cottage, Single-glazing | Sheat,fin = 18.67% | 2024 | [38] |
Model Type | Model Description | TW Description | Main Results | Year | Source |
---|---|---|---|---|---|
Theoretical | Review paper | Different modification | Implementation in Central Europe | 2017 | [39] |
Numerical | Ansys FLUENT, Three-dimensional, Weather file for Wrocław | Optimization options (two types), Triple-glazing, Thermal mass (two types) | - tTZ increases by 8.5 °C, tTZ increases by 0.4 °C | 2019 | [40] |
Experimental | Test chamber | Interactive glass wall | Heat gains higher than heat losses | 2020 | [41] |
Theoretical | Review paper | Characteristic, Thermal performance, Simple case study | Implementation in different climate conditions | 2021 | [42] |
Experimental, Numerical | Laboratory conditions, ADINA, Three-dimensional | PMC materials, Glazing (three types) | Minimum heat flux values are achieved after 16–18 h | 2021 | [43] |
Theoretical | Review paper | Evolution from 1967 to 2022 | - | 2022 | [44] |
Experimental | Laboratory test | Thermo-Diode | η = 21.58–30.3% | 2022 | [45] |
Parameter | Layer | |||||||
---|---|---|---|---|---|---|---|---|
Triple-Glazing * | Air | Selective Coating | Massive Wall | |||||
Glass | Air | Glass | Air | Glass | ||||
δ [mm] | 3 | 30 | 3 | 30 | 3 | 100 | 1.6 | 400 |
λ [W/mK] | 0.9 | - | 0.9 | - | 0.9 | - | 393 | 1.73 |
ρ [kg/m3] | 2300 | - | - | - | - | - | 8907 | 2242 |
cp [J/kgK] | - | - | - | - | - | - | 370 | 837 |
ST [-] | 0.899 | - | 0.899 | - | 0.899 | - | - | - |
SR [-] | 0.079 | - | 0.079 | - | 0.079 | - | - | - |
α [-] | - | - | - | - | - | - | 0.94 | 0.65 |
ε [-] | - | - | - | - | - | - | 0.06 | 0.9 |
Month | V. coignetiae | H. lupulus | W. sinensis | A. macrophylla |
---|---|---|---|---|
January | 0.73 | 0.69 | 0.77 | 0.71 |
February | 0.74 | 0.67 | 0.74 | 0.7 |
March | 0.62 | 0.69 | 0.72 | 0.73 |
April | 0.57 | 0.63 | 0.66 | 0.7 |
May | 0.39 | 0.3 | 0.58 | 0.43 |
June | 0.16 | 0.14 | 0.48 | 0.19 |
July | 0.12 | 0.08 | 0.23 | 0.12 |
August | 0.13 | 0.09 | 0.16 | 0.14 |
September | 0.14 | 0.1 | 0.16 | 0.13 |
October | 0.5 | 0.21 | 0.16 | 0.18 |
November | 0.64 | 0.42 | 0.24 | 0.35 |
December | 0.71 | 0.63 | 0.6 | 0.59 |
Month | tair [°C] | φair [%] | cwd [m/s] | Dwd [°] | Hbeam [W/m2] | Hdiff [W/m2] |
---|---|---|---|---|---|---|
January | 0.40 | 83.47 | 1.85 | 220.38 | 84.84 | 32.33 |
February | 4.10 | 73.55 | 2.57 | 235.82 | 139.87 | 36.98 |
March | 8.15 | 68.59 | 1.49 | 208.78 | 161.25 | 59.75 |
April | 13.22 | 65.75 | 1.28 | 202.62 | 228.28 | 68.91 |
May | 16.64 | 72.95 | 1.73 | 211.34 | 213.88 | 84.29 |
June | 20.81 | 66.44 | 2.18 | 232.16 | 241.83 | 85.07 |
July | 22.83 | 66.80 | 1.68 | 215.98 | 266.77 | 77.38 |
August | 23.19 | 59.35 | 1.73 | 205.57 | 257.56 | 65.90 |
September | 18.46 | 64.80 | 1.91 | 204.22 | 196.95 | 59.22 |
October | 13.39 | 78.28 | 1.96 | 202.43 | 133.99 | 47.14 |
November | 7.79 | 78.92 | 2.15 | 205.41 | 101.45 | 31.48 |
December | 3.02 | 81.13 | 1.97 | 210.24 | 73.99 | 24.50 |
Month | tair [°C] | φair [%] | cwd [m/s] | Dwd [°] | Hbeam [W/m2] | Hdiff [W/m2] |
---|---|---|---|---|---|---|
January | −1.65 | 88.97 | 3.75 | 209.93 | 52.18 | 23.99 |
February | −1.18 | 88.08 | 3.49 | 208.95 | 59.32 | 46.46 |
March | 3.20 | 80.62 | 3.90 | 218.64 | 116.89 | 56.96 |
April | 8.55 | 72.27 | 3.40 | 173.67 | 176.31 | 69.37 |
May | 13.43 | 74.25 | 2.73 | 180.63 | 198.82 | 90.80 |
June | 17.84 | 74.91 | 2.66 | 174.94 | 209.95 | 89.46 |
July | 19.68 | 71.41 | 2.40 | 231.31 | 203.00 | 82.56 |
August | 18.50 | 71.03 | 2.28 | 212.23 | 192.00 | 72.32 |
September | 14.59 | 76.06 | 2.38 | 207.36 | 135.53 | 59.29 |
October | 8.28 | 85.81 | 2.58 | 178.84 | 101.97 | 37.01 |
November | 4.75 | 87.02 | 2.66 | 198.98 | 69.89 | 22.74 |
December | 1.29 | 87.94 | 2.98 | 154.18 | 51.65 | 16.23 |
Location | Kragujevac | Kielce |
---|---|---|
Rulebook | Serbian Rulebook | Polish Rulebook |
Climate region | Moderate continental climate | Continental climate |
Building type (Figure 8 and Figure 9) | Without and with additional bioclimatic-passive elements |
Glazing Type | Optical Efficiency in General * |
---|---|
Single-glazing | |
Double-glazing | |
Triple-glazing |
Solar Component | Zone Z1 | Zone Z2 |
---|---|---|
Beam | ||
Diffuse | ||
Reflected |
Glazing Type | Heat Transfer Coefficient in General * |
---|---|
Single-glazing | |
Double-glazing | |
Triple-glazing |
Layer | eemb [kWh/kg] | m [kg] | Eemb [kWh] | Yinv [EUR] |
---|---|---|---|---|
Massive wall | 0.833 | 37,306.88 | 1243.07 | 2455 |
Selective coating | 0.389 | 661.26 | 10.29 | 194 |
Glazing | 3.53 | mGL = mSG = mGL1 = 269.1 | 38 | 585 |
mGL = mDG = mGL1 + mGL2 = 538.2 | 75.99 | 1170 | ||
mGL = mTG = mGL1 + mGL2 + mGL3 = 807.3 | 113.99 | 1755 | ||
Wooden pergolas | 3.05 | 75.84 | 9.25 | 155 |
Specific Indicator | Serbia | Poland |
---|---|---|
Rel [-] | 2.5 [62] | 2.32 [71] |
gCO2 [kg/kWh] | 0.53 [62] | 0.758 [72] |
yel [EUR/kWh] | 0.124 * [73] | 0.24 [74] |
Town | Etot,use [kWh] | Etot,fin [kWh] | Etot,pry [kWh] | Mtot,CO2 [kg] | Yel,before [EUR] |
---|---|---|---|---|---|
Kragujevac | 5931.21 | 4647.48 | 11,618.7 | 6157.91 | 576.29 |
Kielce | 7036.65 | 6788.06 | 15,748.3 | 11,937.21 | 1629.13 |
Glazing Type | Deciduous Climber | Etot,use [kWh] | Etot,fin [kWh] | Etot,pry [kWh] | Mtot,CO2 [kg] | Yel,after [EUR] |
---|---|---|---|---|---|---|
Single-glazing | V. coignetiae | 6428.28 | 4646.90 | 11,617.25 | 6157.14 | 576.22 |
H. lupulus | 6647.06 | 4894.81 | 12,237.03 | 6485.62 | 606.96 | |
W. sinensis | 6848.92 | 4978.85 | 12,447.13 | 6596.98 | 617.38 | |
A. macrophylla | 6757.28 | 4950.93 | 12,377.33 | 6559.98 | 613.92 | |
Double-glazing | V. coignetiae | 6295.31 | 4085.4 | 10,213.5 | 5413.16 | 506.59 |
H. lupulus | 6515.58 | 4347.41 | 10,868.53 | 5760.32 | 539.08 | |
W. sinensis | 6774.72 | 4457.93 | 11,144.83 | 5906.76 | 552.78 | |
A. macrophylla | 6667.06 | 4425.85 | 11,064.63 | 5864.25 | 548.81 | |
Triple-glazing | V. coignetiae | 6386.13 | 3879.05 | 9697.63 | 5139.74 | 481 |
H. lupulus | 6515.97 | 4081.47 | 10,203.68 | 5407.95 | 506.1 | |
W. sinensis | 6820.69 | 4214.4 | 10,536 | 5584.08 | 522.59 | |
A. macrophylla | 6697.91 | 4174.44 | 10,436.1 | 5531.13 | 517.63 |
Glazing Type | Deciduous Climber | Etot,use [kWh] | Etot,fin [kWh] | Etot,pry [kWh] | Mtot,CO2 [kg] | Yel,after [EUR] |
---|---|---|---|---|---|---|
Single-glazing | V. coignetiae | 7950.09 | 7534.5 | 17,480.04 | 13,249.87 | 1808.28 |
H. lupulus | 8185.77 | 7797.71 | 18,090.69 | 13,712.74 | 1871.45 | |
W. sinensis | 8373.35 | 7870.6 | 18,259.79 | 13,840.92 | 1888.94 | |
A. macrophylla | 8244.67 | 7819.13 | 18,140.38 | 13,750.41 | 1876.59 | |
Double-glazing | V. coignetiae | 7241.56 | 6475.35 | 15,022.81 | 11,387.29 | 1554.08 |
H. lupulus | 7491.12 | 6763.18 | 15,690.58 | 11,893.46 | 1623.16 | |
W. sinensis | 7769.67 | 6877.15 | 15,954.99 | 12,093.88 | 1650.52 | |
A. macrophylla | 7595.65 | 6807.99 | 15,794.54 | 11,972.26 | 1633.92 | |
Triple-glazing | V. coignetiae | 6902.82 | 5908.07 | 13,706.72 | 10,389.7 | 1417.94 |
H. lupulus | 7169.09 | 6218.23 | 14,426.29 | 10,935.13 | 1492.38 | |
W. sinensis | 7480.46 | 6341.65 | 14,712.63 | 11,152.17 | 1522 | |
A. macrophylla | 7298.26 | 6275.73 | 14,559.69 | 11,036.25 | 1506.18 |
Glazing Type | Etot,emb [kWh] | Ytot,inv [EUR] |
---|---|---|
Single-glazing | 1300.61 | 3389 |
Double-glazing | 1338.6 | 3974 |
Triple-glazing | 1376.6 | 4559 |
Glazing Type | Deciduous Climber | Efull [kWh] | PB [Years] | ||
---|---|---|---|---|---|
Kragujevac | Kielce | Kragujevac | Kielce | ||
Single-glazing | V. coignetiae | 12,917.86 | 18,780.65 | >50 | np |
H. lupulus | 13,537.64 | 19,391.3 | np | np | |
W. sinensis | 13,747.74 | 19,560.4 | np | np | |
A. macrophylla | 13,677.94 | 19,440.99 | np | np | |
Double-glazing | V. coignetiae | 11,552.1 | 16,361.41 | >50 | >50 |
H. lupulus | 12,207.13 | 17,029.18 | >50 | >50 | |
W. sinensis | 12,483.43 | 17,293.59 | >50 | np | |
A. macrophylla | 12,403.23 | 17,133.14 | >50 | np | |
Triple-glazing | V. coignetiae | 11,074.23 | 15,083.32 | 40–50 | 20–30 |
H. lupulus | 11,580.28 | 15,802.89 | >50 | 30–40 | |
W. sinensis | 11,912.6 | 16,089.23 | >50 | 40–50 | |
A. macrophylla | 11,812.7 | 15,936.29 | >50 | 30–40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nešović, A.; Kowalik, R. Implementation of a Novel Bioclimatic-Passive Architecture Concept in Serbian and Polish Residential Building Sectors. Buildings 2025, 15, 2877. https://doi.org/10.3390/buildings15162877
Nešović A, Kowalik R. Implementation of a Novel Bioclimatic-Passive Architecture Concept in Serbian and Polish Residential Building Sectors. Buildings. 2025; 15(16):2877. https://doi.org/10.3390/buildings15162877
Chicago/Turabian StyleNešović, Aleksandar, and Robert Kowalik. 2025. "Implementation of a Novel Bioclimatic-Passive Architecture Concept in Serbian and Polish Residential Building Sectors" Buildings 15, no. 16: 2877. https://doi.org/10.3390/buildings15162877
APA StyleNešović, A., & Kowalik, R. (2025). Implementation of a Novel Bioclimatic-Passive Architecture Concept in Serbian and Polish Residential Building Sectors. Buildings, 15(16), 2877. https://doi.org/10.3390/buildings15162877