Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (66)

Search Parameters:
Keywords = Trombe wall

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2071 KiB  
Article
Thermal Performance and Energy Efficiency Evaluation of Building Envelopes Incorporating Trombe Walls, PCM, and Multi-Alveolar Structures in Tunisian Climate
by Nour Lajimi, Noureddine Boukadida, Chemseddine Maatki, Bilel Hadrich, Walid Hassen, Lioua Kolsi and Habib Ben Aissia
Buildings 2025, 15(14), 2575; https://doi.org/10.3390/buildings15142575 - 21 Jul 2025
Viewed by 246
Abstract
Solar energy is one of the most promising solutions for improving building energy efficiency. Among passive heating systems, the combination of a Trombe wall, phase change materials (PCM), and multi-alveolar structures (MAS) stands out. This configuration enhances the wall’s ability to absorb solar [...] Read more.
Solar energy is one of the most promising solutions for improving building energy efficiency. Among passive heating systems, the combination of a Trombe wall, phase change materials (PCM), and multi-alveolar structures (MAS) stands out. This configuration enhances the wall’s ability to absorb solar heat and distribute it evenly throughout the interior. This study evaluated thermal comfort by examining the effects of phase change materials and multi-alveolar structures combined with a Trombe wall on the thermal behavior of a building and improving the thermal inertia of brick walls. Numerical simulations using Visual FORTRAN were conducted to evaluate the thermal properties of different configurations under the climatic conditions recorded in Hammam Sousse, Tunisia. The results show that the integration of the Trombe wall and PCM has a significant impact on interior temperature stability, energy consumption, and overall thermal comfort. The combined effect of the MAS and PCM with the Trombe wall improved heat gain in winter and spring, reaching a low thermal damping factor of 40% in March, reducing heating power, and optimizing thermal comfort for occupants. Full article
Show Figures

Figure 1

18 pages, 8362 KiB  
Article
Thermal Performance of Trombe Walls with Inclined Glazing and Guided Vanes
by Albert Jorddy Valenzuela Inga, Patrick Cuyubamba, Boris Senin Carhuallanqui Parian and Joel Contreras Núñez
Sustainability 2025, 17(11), 4775; https://doi.org/10.3390/su17114775 - 22 May 2025
Viewed by 464
Abstract
The Trombe Wall (TW) has gained recognition for its simplicity, efficiency, and zero operational costs, making it a key contributor to Sustainable Development Goals (SDGs) 7 and 11 by enhancing energy access and providing sustainable heating solutions. This passive solar technology is particularly [...] Read more.
The Trombe Wall (TW) has gained recognition for its simplicity, efficiency, and zero operational costs, making it a key contributor to Sustainable Development Goals (SDGs) 7 and 11 by enhancing energy access and providing sustainable heating solutions. This passive solar technology is particularly beneficial in rural areas, offering cost-effective thermal comfort while minimizing environmental impact. This study evaluates the performance of three TW configurations attached to a room, designed with inclined glazing relative to the vertical air layer and stone layers at the bottom acting as thermal mass, commonly used in rural installations in Peru. Using 2D Computational Fluid Dynamics, the analysis compares an inclined heated wall with guided vanes featuring three or five blades to a configuration without vanes. Results show that the three-blade guided flow configuration achieves the highest temperature rise of 4 °C, with a reference temperature of 20 °C, under an absorber heat flux of 200–400 W/m2, albeit with a slightly lower flow rate of 0.17–0.23 kg/s compared to the configuration without guided flow. The maximum thermal efficiency of 57.90% was observed for the three-blade configuration, which is 2.26% higher than the efficiency of the configuration without guided flow, under an absorber heat flux of 400 W/m2. The obtained path-lines reveals that the three-blade configuration minimizes flow detachment, nearly eliminates recirculation near the bottom corner of the glazing, and reduces the separation bubble at the top corner of the massive wall near the outlet. These findings highlight the potential of guided vanes to enhance the performance of Trombe Walls in rural settings. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

23 pages, 1475 KiB  
Article
The Comprehensive Energy and Exergy Analysis on Thermal-Catalytic-Type and Thermal-Catalytic–Photovoltaic-Type Trombe Walls
by Weikai Wang, Niansi Li, Wei Wei, Jie Ji and Bendong Yu
Buildings 2025, 15(10), 1683; https://doi.org/10.3390/buildings15101683 - 16 May 2025
Cited by 2 | Viewed by 492
Abstract
The aim of this study is to address the lack of comprehensive analysis methods for multi-functional Trombe wall systems. The objective is to establish an integrated evaluation system that assesses thermal, purification, and power generation performance. This study introduces a novel multi-objective analysis [...] Read more.
The aim of this study is to address the lack of comprehensive analysis methods for multi-functional Trombe wall systems. The objective is to establish an integrated evaluation system that assesses thermal, purification, and power generation performance. This study introduces a novel multi-objective analysis method coupling energy and exergy efficiency for three types of Trombe wall structures: traditional, thermal-catalytic (TC), and TC–photovoltaic (TC-PV). This study simultaneously monitors heat transfer, formaldehyde degradation, and photovoltaic power generation performance. A key novelty is the introduction of a quantitative index for “purification efficiency” and the revelation of the co-evolution law between PV (photovoltaic) coverage and the three types of efficiency for the first time. This study evaluates three cases: traditional, TC, and TC-PV Trombe walls. The results show that the thermal efficiencies of the three Trombe walls are 47.2%, 41.9%, and 51.7%, respectively, with corresponding thermal exergy efficiencies of 0.59%, 0.49%, and 0.63%. The TC and TC-PV Trombe walls achieve purification efficiencies of 57.0% and 53.0% and purification exergy efficiencies of 2.53% and 2.42%, respectively. The TC-PV Trombe wall has electrical and electrical exergy efficiencies of 16.0% and 12.84%, respectively. System structure optimization analysis indicates that the system achieves the best exergy efficiency when the solar irradiation is 400 W/m2 and the air channel thickness is 0.05 m. Additionally, the purification exergy efficiency increases with higher formaldehyde concentrations, while thermal, purification, and electric exergy efficiencies all increase with greater PV coverage. Exergy loss analysis reveals that the TC layer and heat-absorbing plate are major sources of loss. Therefore, developing catalytic materials with high absorptivity and high catalytic activity could enhance the system’s exergy efficiency. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

22 pages, 21521 KiB  
Article
Simulation-Based Natural Ventilation Performance Assessment of a Novel Phase-Change-Material-Equipped Trombe Wall Design: A Case Study
by Rui Xu, Yanfei Zhang, Shaoyang Lou, Xu Chen, Guoyi Zhang and Zhonggou Chen
Buildings 2025, 15(8), 1239; https://doi.org/10.3390/buildings15081239 - 9 Apr 2025
Viewed by 344
Abstract
To evaluate the potential of phase-change materials (PCMs) in improving the indoor thermal and airflow environment of Trombe walls under solar energy limitations, a computational fluid dynamics (CFDs) model was employed in this study to perform comparative simulations. Taking traditional Trombe walls (TWs) [...] Read more.
To evaluate the potential of phase-change materials (PCMs) in improving the indoor thermal and airflow environment of Trombe walls under solar energy limitations, a computational fluid dynamics (CFDs) model was employed in this study to perform comparative simulations. Taking traditional Trombe walls (TWs) as the control group and PCM-Trombe walls (PCM-TWs) as the experimental group, the simulation analysis was carried out based on meteorological data from a typical spring day in Hangzhou in 2024. The results indicate that the application of PCM significantly reduced temperature fluctuations in the air channel, lowering the peak temperature by 8.3 °C. Meanwhile, it delayed the decline in ventilation rate, extending the effective ventilation time by approximately one hour. Moreover, by calculating the Grashof number and ventilation rate, it was observed that the buoyancy effect of PCM-TWs is weaker than that of TWs at the peak wind speed, resulting in a lower natural convection intensity. The ventilation rate variation trend of PCM-TWs was smoother, with its peak ventilation rate slightly lower than that of TWs by 0.008 kg/s. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

36 pages, 13294 KiB  
Article
An Innovative Multi-Story Trombe Wall as a Passive Cooling and Heating Technique in Hot Climate Regions: A Simulation-Optimization Study
by Ahmed Abdelsamea, Hamdy Hassan, Hassan Shokry, Takashi Asawa and Hatem Mahmoud
Buildings 2025, 15(7), 1150; https://doi.org/10.3390/buildings15071150 - 1 Apr 2025
Viewed by 1122
Abstract
This study develops an optimized multi-story Trombe Wall (MTW) as a hybrid passive system for heating, cooling, and PV electricity generation. Unlike previous research, which focused on single-story applications and heating efficiency, this study explores MTW performance in hot climates. The methodology includes [...] Read more.
This study develops an optimized multi-story Trombe Wall (MTW) as a hybrid passive system for heating, cooling, and PV electricity generation. Unlike previous research, which focused on single-story applications and heating efficiency, this study explores MTW performance in hot climates. The methodology includes four phases: identifying TW design parameters, selecting and validating a case study, applying a two-stage optimization, and developing predictive equations. Results show that the MTW achieves up to a 1.94 °C decrease in cooling mode, a 1.56 °C increase in heating mode, a 40% increase in thermal comfort hours, and a 31% rise in annual PV electricity generation. Finally, the developed regression models demonstrated strong predictive capability (R2 = 70.2–95.73%) for discomfort and electricity generation. The proposed MTW provides a cost-effective and sustainable solution, supporting designers and researchers in optimizing building performance. Full article
(This article belongs to the Special Issue Zero-Emission Buildings and the Sustainable Built Environment)
Show Figures

Figure 1

23 pages, 11086 KiB  
Article
Thermal Energy Storage Possibilities in the Composite Trombe Wall Modified with a Phase Change Material
by Joanna Krasoń, Przemysław Miąsik, Aleksander Starakiewicz and Lech Lichołai
Energies 2025, 18(6), 1433; https://doi.org/10.3390/en18061433 - 14 Mar 2025
Viewed by 548
Abstract
Energy savings issues are important in the context of building operation. An interesting solution for the southern external walls of the building envelope is the thermal storage wall (TSW), also known as the Trombe wall. The article considers four variants of the wall [...] Read more.
Energy savings issues are important in the context of building operation. An interesting solution for the southern external walls of the building envelope is the thermal storage wall (TSW), also known as the Trombe wall. The article considers four variants of the wall structure, including three containing phase change material (PCM). The purpose of this study was to determine the influence of the amount and location of phase change material in the masonry layer on the storage and flow of heat through the barrier. Each wall is equipped with a double-glazed external collector system with identical physical parameters. The research was carried out in specially dedicated testing stations in the form of external solar energy chambers, subjected to real climatic loads. The distribution of the heat flux density values was determined using experimental tests and was subjected to comparative analysis for the various variants considered using statistical analytical methods. A comparative analysis was performed between the heat flux density values obtained for each barrier in the assumed time interval from the one-year research period. The Kruskal–Wallis test and the median test were used for analyses performed in the Statistica 13.3 programme. The purpose of these analyses was to determine the occurrence of significant differences between individual heat flux flows through the barriers tested. The results obtained indicate that the use of PCM in thermal storage walls extends the time required to transfer the accumulated heat in the barrier to the internal environment while reducing the amplitude of the internal air temperature. Full article
Show Figures

Figure 1

13 pages, 3725 KiB  
Article
Transient Simulation of the Thermal Performance of a Novel Phase Change Material Trombe Wall
by Tianhu Zhang, Hai Wang, Jieran Ding, Shoufeng Tang, Deling Yuan and Yandi Rao
Coatings 2025, 15(3), 303; https://doi.org/10.3390/coatings15030303 - 5 Mar 2025
Viewed by 780
Abstract
The Trombe wall is a typical passive building technique. To enhance the thermal performance of Trombe walls, a novel Trombe wall structure incorporating two phase change material (PCM) layers was designed. A numerical model of the PCM Trombe wall was established and validated [...] Read more.
The Trombe wall is a typical passive building technique. To enhance the thermal performance of Trombe walls, a novel Trombe wall structure incorporating two phase change material (PCM) layers was designed. A numerical model of the PCM Trombe wall was established and validated against the experimental results. To explore the thermal performance of this PCM Trombe wall system, actual meteorological conditions were incorporated into the numerical simulations. Under transient conditions, the indoor temperature and velocity during the thermal storage and release stages were analyzed. Compared to conventional Trombe walls, the new PCM Trombe wall exhibited a 4 h delay in reaching peak temperature while simultaneously reducing indoor temperature fluctuations by 68.4%. Moreover, the new PCM Trombe wall showed excellent thermal storage capabilities, and the indoor temperature reached 18.2 °C after continuous cycles of thermal storage and release. Notably, the internal thermal storage layer in the new PCM Trombe wall can significantly reduce the indoor air velocity and improve thermal comfort. Full article
Show Figures

Figure 1

35 pages, 16410 KiB  
Review
Development of Wall-Integrated Solar Energy Technologies
by Renhua Liu, Wentao Duan, Guoqing He and Qikun Wang
Energies 2025, 18(4), 952; https://doi.org/10.3390/en18040952 - 17 Feb 2025
Cited by 1 | Viewed by 895
Abstract
Rising global energy demand, particularly in the building sector, has catalyzed a shift toward sustainable building practices. Buildings are now being redefined from mere energy consumers to potential energy providers, with building façades offering extensive areas for solar installations. This paper reviews recent [...] Read more.
Rising global energy demand, particularly in the building sector, has catalyzed a shift toward sustainable building practices. Buildings are now being redefined from mere energy consumers to potential energy providers, with building façades offering extensive areas for solar installations. This paper reviews recent advances in Wall-Integrated Solar Energy (WISE) systems that produce heat and electricity. A detailed comparison of their structures and performance is provided for various WISE systems, including building-integrated photovoltaic/thermal (BIPV/T) systems, attached sunspaces, Trombe walls, solar thermal collectors (STCs), PV–Trombe, Bio–PV, etc. The goal of this review is to understand the capacity of these technologies to produce energy via walls. The review concludes with key findings and future recommendations, aiming to guide the sustainable evolution of the building industry. Data from the literature suggest that building walls can be a promising energy source with the appropriate integration of solar energy. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

17 pages, 11895 KiB  
Article
Experimental Thermal Assessment of a Trombe Wall Under a Semi-Arid Mediterranean Climate of Mexico
by Iván Hernández-Pérez, Álan Rodriguez-Ake, Daniel Sauceda-Carvajal, Irving Hernández-López, Balaji Kumar and Ivett Zavala-Guillén
Energies 2025, 18(1), 185; https://doi.org/10.3390/en18010185 - 4 Jan 2025
Cited by 1 | Viewed by 1015
Abstract
The conventional Trombe wall (TW) with concrete construction has been shown to enhance the indoor environment of buildings in cold and Mediterranean climates. Thus, a TW is an option for reducing energy consumption related to thermal comfort for buildings in the northwestern region [...] Read more.
The conventional Trombe wall (TW) with concrete construction has been shown to enhance the indoor environment of buildings in cold and Mediterranean climates. Thus, a TW is an option for reducing energy consumption related to thermal comfort for buildings in the northwestern region of Mexico, characterized by arid and semi-arid conditions with low winter temperatures. The thermal behavior of the TW and a conventional facade (CF) of concrete were compared when installed in the southern wall of reduced-scale test boxes in Ensenada, B.C. Unlike other research works available in the literature, which typically monitored a data point measure of the wall and room temperatures, the present study measured the temperature of key components: the absorber wall, the air at the bottom and top vents, the glass cover, and the air at the cross-section plane of the TW test box. The results showed that the TW increases the air temperature through its channel up to 14 C and yields a maximum thermal efficiency of 84% during a sunny winter week. Further, the indoor air temperature at the midpoint of the TW test module is up to 6 C greater than the obtained on the CF-test module; therefore, the TW improved the thermal comfort conditions during winter. Full article
(This article belongs to the Special Issue Thermal Comfort and Energy Performance in Building)
Show Figures

Figure 1

20 pages, 4461 KiB  
Article
Numerical Simulation of Climate Change Impact on Energy, Environmental and Economic Performances of Small Single-Family Houses Equipped with Trombe Walls and Fixed Horizontal Overhangs
by Robert Kowalik, Aleksandar Nešović, Dragan Cvetković, Agata Janaszek and Tomasz Kozłowski
Energies 2024, 17(24), 6275; https://doi.org/10.3390/en17246275 (registering DOI) - 12 Dec 2024
Cited by 2 | Viewed by 871
Abstract
Although the European residential sector has promoted various heating and cooling passive solar systems in many ways, ongoing climate changes affect these construction elements at an annual level. Using the weather files for three years in the recent past (2018, 2021 and 2023), [...] Read more.
Although the European residential sector has promoted various heating and cooling passive solar systems in many ways, ongoing climate changes affect these construction elements at an annual level. Using the weather files for three years in the recent past (2018, 2021 and 2023), this paper numerically investigates the energy, environmental and economic performance of two small single-family houses equipped with Trombe walls and fixed horizontal overhangs of different depths (0 m, 0.25 m, 0.5 m, 0.75 m and 1 m) for two characteristic European climate zones: continental (Kielce city, Poland) and moderate continental (Kragujevac city, Serbia). Both houses were created in Google SketchUp 8 software using current Statistical data and Rulebooks of energy efficiency, while adopted heating (gas boiler and radiators) and cooling (individual air-conditioning units) active thermo-technical systems were simulated in EnergyPlus 7.1 software using official specific energy, environmental and economic indicators. Compared to the appropriate reference houses—without mentioning passive solar systems—the main results of this study are as follows: (1) higher outdoor air temperatures can reduce final (thermal) energy consumption for heating by 37.74% (for the Kielce climate zone) and 52.49% (for the Kragujevac climate zone); (2) higher outdoor air temperatures can increase final (electricity) energy consumption for cooling between 5.71 and 11.75 times (for Kielce) and 4.36 and 9.81 times (for Kragujevac); (3) percentage savings of primary energy consumption and monetary savings are highest when houses are equipped with Trombe walls and 1 m deep overhangs; and (4) all considered cases of passive solar systems do not contribute to the reduction of greenhouse gas emissions. Since climate change is a consequence of greenhouse gas emissions, priority should be given to environmental indicators in future investigations. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

27 pages, 35961 KiB  
Article
Growing Kratky Basil in Trombe Wall Cavity: Energy Performance
by Iryna Borys Bohoshevych and Hiroatsu Fukuda
Appl. Sci. 2024, 14(23), 11159; https://doi.org/10.3390/app142311159 - 29 Nov 2024
Viewed by 1036
Abstract
This year-long experimental study, conducted in Kitakyushu, Japan, evaluates the performance of a retrofitted Trombe wall designed to cultivate hydroponically grown basil plants, aiming to enhance its year-round usability. The results show that the addition of plants reduced overheating and moderated temperature fluctuations, [...] Read more.
This year-long experimental study, conducted in Kitakyushu, Japan, evaluates the performance of a retrofitted Trombe wall designed to cultivate hydroponically grown basil plants, aiming to enhance its year-round usability. The results show that the addition of plants reduced overheating and moderated temperature fluctuations, but also led to a 30.2% decrease in absorption and a 49.4% decrease in dissipation efficiency compared to a traditional Trombe wall. Seasonal variations influenced the suitability of the space for cultivation, with optimal conditions occurring in spring and summer, while autumn and winter posed challenges due to extreme temperature fluctuations. The daily energy balance was largely unaffected by factors such as leaf transpiration, spontaneous evaporation, additional ventilation, or increased appliance use, as these were overshadowed by the primary thermal processes: solar gains and conductive losses. Although the modified TW still provided passive heating, its energy output was reduced to approximately 10,000 MJ annually, compared to the baseline 14,000 MJ. The study suggests that alternative designs, including increased thermal mass, improved ventilation and better plant selection and could improve both cultivation and energy efficiency. Ultimately, while the green TW is best suited for seasonal use, it offers ecological and social benefits, such as local food production and CO2 fixation, highlighting its potential for integration into sustainable architectural practices. Full article
(This article belongs to the Special Issue Sustainable Building Design: Challenges and Opportunities)
Show Figures

Figure 1

41 pages, 28769 KiB  
Article
Growing Kratky Basil in Trombe Wall Cavity: Year-Round Overview of Thermal Effects
by Iryna Borys Bohoshevych and Hiroatsu Fukuda
Sustainability 2024, 16(23), 10274; https://doi.org/10.3390/su162310274 - 24 Nov 2024
Viewed by 927
Abstract
This experimental study explores the possibility of using an existing Trombe wall as a space for year-round cultivation to increase building resource efficiency. To do so with the least cost to the building, a small 0.75 m2/5.45 m3 Trombe wall [...] Read more.
This experimental study explores the possibility of using an existing Trombe wall as a space for year-round cultivation to increase building resource efficiency. To do so with the least cost to the building, a small 0.75 m2/5.45 m3 Trombe wall cavity space was retrofitted with shelves placed behind the glazing, additional ventilation, and a watering network to be able to grow 400 hydroponic Kratky basil plants in individual glass jars. Historical thermal observations made at the site over a year-long timespan were contrasted with the experimental readings. When fully equipped, the Trombe wall’s thermal mass increased by 51%, which had a balancing effect on the system, lowering the average daily thermal oscillations from 35.41 °C to 17.88 °C. The living plants and water have also had significant cooling (26.99 °C to 22.91 °C) and humidifying (39.88 to 47.74%) effects. The system’s energy efficiency, however, decreased from 26 to 18% (absorption) and from 85 to 46 (dissipation), lowering its energy contribution to the building by about 30%. The average plant’s lifespan within the Trombe wall was 46 days, with 15% of the specimens surpassing the 100-day mark. Over the course of a year, 20.55 kg of edible greens were grown in the Trombe wall. The experiment has shown that it is possible to grow the plants inside the Trombe wall cavity during the warmer half of the year, revealing many possible ways to improve the space’s comfort, yields, and energy efficiency. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

20 pages, 4737 KiB  
Article
Theoretical Analysis of a Novel Rock Wall to Limit Heating Demands in Historical Buildings
by Roberto Bruno and Antonio Cristaudo
Energies 2024, 17(21), 5465; https://doi.org/10.3390/en17215465 - 31 Oct 2024
Cited by 2 | Viewed by 955
Abstract
In the near future, the building sector will continue to absorb the greatest share of primary energy worldwide. It is necessary to find innovative solutions that promote energy efficiency through renovation measures, especially in historical buildings, for which refurbishment is constrained by several [...] Read more.
In the near future, the building sector will continue to absorb the greatest share of primary energy worldwide. It is necessary to find innovative solutions that promote energy efficiency through renovation measures, especially in historical buildings, for which refurbishment is constrained by several issues. In this study, we propose a novel Trombe Wall configuration that is easily integrable and based on a rock wall made of caged stone to use as a thermal accumulator. The system was investigated preliminarily using a transient Finite Difference Method (FDM) code to analyse the temperature field inside the rock wall. Successively, FDM results were employed as input data in TRNSYS simulations to determine the savings achievable in thermal heating requirements. The results demonstrated that the proposed solution, in the considered climate and on a reference historic building, can produce monthly heating savings varying between 26% and 85%. So, the rock wall results in a reliable solution for buildings in which refurbishment is difficult, allowing for preserving aesthetic features and improving energy efficiency by rationally using solar radiation. Full article
(This article belongs to the Special Issue Performance Analysis of Building Energy Efficiency)
Show Figures

Figure 1

16 pages, 13292 KiB  
Article
Preparation and Performance Study of CaCl2 Composite Adsorbent Based on Rock Wool Board Suitable for Continuous Heat Storage/Release of Trombe Wall
by Yutong Xiao, Siyu Wei, Yuanyi Yang, Chunhao Wang and Shanbi Peng
Energies 2024, 17(20), 5033; https://doi.org/10.3390/en17205033 - 10 Oct 2024
Cited by 1 | Viewed by 1127
Abstract
As a passive solar design technology, the Trombe wall can improve buildings’ energy efficiency and thermal comfort. However, the traditional Trombe wall heating efficiency is low and cannot meet the needs of continuous night heating of the building. To solve these problems, a [...] Read more.
As a passive solar design technology, the Trombe wall can improve buildings’ energy efficiency and thermal comfort. However, the traditional Trombe wall heating efficiency is low and cannot meet the needs of continuous night heating of the building. To solve these problems, a new type of sheet-like composite adsorbent is proposed in this study, prepared from calcium chloride supported by a rock wool board, a high-porosity building material. The high adaptability of rock wool board to the building wall makes it possible for the composite adsorbent to be directly applied to the Trombe wall. The results show that the macroporous structure of the rock wool board provides a wealth of space for loading hydrated salts. The smaller the density and thickness, the more calcium chloride the rock wool board can carry, speeding up the absorption/deportation process. The rock wool slab-based calcium chloride composite adsorbent has a maximum adsorption capacity of 51% and a heat storage density of about 838 J/g. Achieving the desorbed balance within 8 h and applying it to the Trombe wall is expected to attain continuous heating of buildings and has significant potential in building energy conservation. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

17 pages, 3977 KiB  
Article
Passive Ventilation of Residential Buildings Using the Trombe Wall
by Khrystyna Myroniuk, Yurii Furdas, Vasyl Zhelykh, Mariusz Adamski, Olena Gumen, Valerii Savin and Stergios-Aristoteles Mitoulis
Buildings 2024, 14(10), 3154; https://doi.org/10.3390/buildings14103154 - 3 Oct 2024
Cited by 9 | Viewed by 2338
Abstract
The article explores passive systems for regulating microclimates in residential settings, with a focus on modular constructions. It investigates the use of the trombe wall system for passive ventilation to ensure comfort and hygiene. The study examines building designs that enable effective air [...] Read more.
The article explores passive systems for regulating microclimates in residential settings, with a focus on modular constructions. It investigates the use of the trombe wall system for passive ventilation to ensure comfort and hygiene. The study examines building designs that enable effective air circulation without using mechanical systems. Furthermore, the effectiveness of the passive system of using solar energy with the trombe wall as a ventilation device in modular houses has been experimentally confirmed. Although the research confirms the effectiveness of this solar system in modular homes, there is limited documentation regarding its overall efficiency, particularly concerning the impact of the surface pressure coefficient on ventilation. The study establishes the correlations governing the thermosiphon collector’s effectiveness at varying air layer thicknesses. Optimal parameters, such as maximum air consumption (L = 120 m3h−1), are identified at an air layer thickness (δ) of 100 mm and outlet openings area (F) of 0.056 m2. These findings pave the way for improving passive systems aimed at maintaining optimal thermal and air conditions in modern homes. The findings suggest the potential for more efficient and sustainable housing solutions. Further research is essential to understand how factors like building design and wind speed affect ventilation system efficacy. Full article
Show Figures

Figure 1

Back to TopTop