Understanding the Interdependence of Penetration Depth and Deformation on Nanoindentation of Nanoporous Silver
Abstract
1. Introduction
2. Experiments
2.1. Formation of Nanoporous Materials
2.2. Nanoporous Structure
2.3. Nanoindentation
3. Depth Dependence of Hardness
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Weissmuller, J.; Newman, R.C.; Jin, H.J.; Hodge, A.M.; Kysar, J.W. Nanoporous Metals by Alloy Corrosion: Formation and Mechanical Properties. MRS Bull. 2009, 34, 577–586. [Google Scholar] [CrossRef]
- Mameka, N.; Wang, K.; Markmann, J.; Lilleodden, E.T.; Weissmuller, J. Nanoporous Gold-Testing Macro-scale Samples to Probe Small-scale Mechanical Behavior. Mater. Res. Lett. 2016, 4, 27–36. [Google Scholar] [CrossRef]
- Badwe, N.; Chen, X.Y.; Sieradzki, K. Mechanical properties of nanoporous gold in tension. Acta Mater. 2017, 129, 251–258. [Google Scholar] [CrossRef]
- Jin, H.J.; Weissmuller, J. A Material with Electrically Tunable Strength and Flow Stress. Science 2011, 332, 1179–1182. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.J.; Weissmuller, J.; Farkas, D. Mechanical response of nanoporous metals: A story of size, surface stress, and severed struts. MRS Bull. 2018, 43, 35–42. [Google Scholar] [CrossRef]
- Fujita, T.; Tokunaga, T.; Zhang, L.; Li, D.W.; Chen, L.Y.; Arai, S.; Yamamoto, Y.; Hirata, A.; Tanaka, N.; Ding, Y.; et al. Atomic Observation of Catalysis-Induced Nanopore Coarsening of Nanoporous Gold. Nano Lett. 2014, 14, 1172–1177. [Google Scholar] [CrossRef]
- Chen, Q.; Ding, Y.; Chen, M.W. Nanoporous metal by dealloying for electrochemical energy conversion and storage. MRS Bull. 2018, 43, 43–48. [Google Scholar] [CrossRef]
- Seker, E.; Berdichevsky, Y.; Staley, K.J.; Yarmush, M.L. Microfabrication-Compatible Nanoporous Gold Foams as Biomaterials for Drug Delivery. Adv. Healthc. Mater. 2012, 1, 172–176. [Google Scholar] [CrossRef]
- El-Safty, S.A.; Hoa, N.D.; Shenashen, M.A. Topical Developments of Nanoporous Membrane Filters for Ultrafine Noble Metal Nanoparticles. Eur. J. Inorg. Chem. 2012, 2012, 5439–5450. [Google Scholar] [CrossRef]
- Juarez, T.; Biener, J.; Weissmuller, J.; Hodge, A.M. Nanoporous Metals with Structural Hierarchy: A Review. Adv. Eng. Mater. 2017, 19, 1700389. [Google Scholar] [CrossRef]
- Seker, E.; Reed, M.L.; Begley, M.R. Nanoporous Gold: Fabrication, Characterization, and Applications. Materials 2009, 2, 2188–2215. [Google Scholar] [CrossRef]
- Vargas-Martinez, J.; Estela-Garcia, J.E.; Suarez, O.M.; Vega, C.A. Fabrication of a Porous Metal via Selective Phase Dissolution in Al-Cu Alloys. Metals 2018, 8, 378. [Google Scholar] [CrossRef]
- Ziehmer, M.; Hu, K.X.; Wang, K.; Lilleodden, E.T. A principle curvatures analysis of the isothermal evolution of nanoporous gold: Quantifying the characteristic length-scales. Acta Mater. 2016, 120, 24–31. [Google Scholar] [CrossRef]
- Jiao, J.; Huber, N. Deformation mechanisms in nanoporous metals: Effect of ligament shape and disorder. Comput. Mater. Sci. 2017, 127, 194–203. [Google Scholar] [CrossRef][Green Version]
- Storm, J.; Abendroth, M.; Emmel, M.; Liedke, T.; Ballaschk, U.; Voigt, C.; Sieber, T.; Kuna, M. Geometrical modelling of foam structures using implicit functions. Int. J. Solids Struct. 2013, 50, 548–555. [Google Scholar] [CrossRef]
- Lilleodden, E.T.; Voorhees, P.W. On the topological, morphological, and microstructural characterization of nanoporous metals. MRS Bull. 2018, 43, 20–26. [Google Scholar] [CrossRef]
- Barsuk, D.; Zadick, A.; Chatenet, M.; Georgarakis, K.; Panagiotopoulos, N.T.; Champion, Y.; Jorge, A.M. Nanoporous silver for electrocatalysis application in alkaline fuel cells. Mater. Des. 2016, 111, 528–536. [Google Scholar] [CrossRef]
- Lawn, B.; Wilshaw, R. Indentation fracture principles and applications. J. Mater. Sci. 1975, 10, 1049–1081. [Google Scholar] [CrossRef]
- Hutchings, I.M. The contributions of David Tabor to the science of indentation hardness. J. Mater. Res. 2009, 24, 581–589. [Google Scholar] [CrossRef]
- Yuan, Z.W.; Li, F.G.; Chen, B.; Xue, F.M. The correlation between indentation hardness and material properties with considering size effect. J. Mater. Res. 2014, 29, 1317–1325. [Google Scholar] [CrossRef]
- Ashby, M.F. The deformation of plastically non-homogeneous materials. Philos. Mag. 1970, 21, 399–424. [Google Scholar] [CrossRef]
- Nix, W.D.; Gao, H.J. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 1998, 46, 411–425. [Google Scholar] [CrossRef]
- Huang, Y.J.; Shen, J.; Sun, Y.; Sun, J.F. Indentation size effect of hardness of metallic glasses. Mater. Des. 2010, 31, 1563–1566. [Google Scholar] [CrossRef]
- Champion, Y.; Perriere, L. Strain Gradient in Micro-Hardness Testing and Structural Relaxation in Metallic Glasses. Adv. Eng. Mater. 2015, 17, 885–892. [Google Scholar] [CrossRef]
- Zhang, M.; Jorge Junior, A.M.; Pang, S.J.; Zhang, T.; Yavari, A.R. Fabrication of nanoporous silver with open pores. Scr. Mater. 2015, 100, 21–23. [Google Scholar] [CrossRef]
- Boulos, V.; Salvo, L.; Fristot, V.; Lhuissier, P.; Houzet, D. Investigating performance variations of an optimized GPU-ported granulometry algorithm. In Proceedings of the 18th International European Conference on Parallel and Distributed Computing, Rhodes Island, Greece, 27–31 August 2012. [Google Scholar]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Shapiro, I.; Kolthoff, I.M. Studies on the Aging of Precipitates and Coprecipitation. XXXVIII. The Compressibility of Silver Bromide Powders. J. Phys. Chem. 1947, 51, 483–493. [Google Scholar]
- Ashby, M.F.; Evans, A.G.; Fleck, N.A.; Gibson, L.J.; Hutchinson, J.W.; Wadley, H.N.G. Metal Foams: A Design Guide; Butterworth Heinemann: Boston, MA, USA, 2000. [Google Scholar]
- James, P.J. Particle deformation during cold isostatic pressing of metal powders. Powder Metall. 1977, 20, 199–204. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Champion, Y.; Laurent-Brocq, M.; Lhuissier, P.; Charlot, F.; Moreira Jorge Junior, A.; Barsuk, D. Understanding the Interdependence of Penetration Depth and Deformation on Nanoindentation of Nanoporous Silver. Metals 2019, 9, 1346. https://doi.org/10.3390/met9121346
Champion Y, Laurent-Brocq M, Lhuissier P, Charlot F, Moreira Jorge Junior A, Barsuk D. Understanding the Interdependence of Penetration Depth and Deformation on Nanoindentation of Nanoporous Silver. Metals. 2019; 9(12):1346. https://doi.org/10.3390/met9121346
Chicago/Turabian StyleChampion, Yannick, Mathilde Laurent-Brocq, Pierre Lhuissier, Frédéric Charlot, Alberto Moreira Jorge Junior, and Daria Barsuk. 2019. "Understanding the Interdependence of Penetration Depth and Deformation on Nanoindentation of Nanoporous Silver" Metals 9, no. 12: 1346. https://doi.org/10.3390/met9121346
APA StyleChampion, Y., Laurent-Brocq, M., Lhuissier, P., Charlot, F., Moreira Jorge Junior, A., & Barsuk, D. (2019). Understanding the Interdependence of Penetration Depth and Deformation on Nanoindentation of Nanoporous Silver. Metals, 9(12), 1346. https://doi.org/10.3390/met9121346