Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = nanoporous metallic alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1940 KiB  
Article
Nanoporous CuAuPtPd Quasi-High-Entropy Alloy Prism Arrays for Sustainable Electrochemical Nitrogen Reduction
by Shuping Hou, Ziying Meng, Weimin Zhao and Zhifeng Wang
Metals 2025, 15(5), 568; https://doi.org/10.3390/met15050568 - 21 May 2025
Viewed by 468
Abstract
Electrochemical nitrogen reduction reaction (NRR) has emerged as a promising approach for sustainable ammonia synthesis under ambient conditions, offering a low-energy alternative to the traditional Haber–Bosch process. However, the development of efficient and sustainable electrocatalysts for NRR remains a significant challenge. Noble metals, [...] Read more.
Electrochemical nitrogen reduction reaction (NRR) has emerged as a promising approach for sustainable ammonia synthesis under ambient conditions, offering a low-energy alternative to the traditional Haber–Bosch process. However, the development of efficient and sustainable electrocatalysts for NRR remains a significant challenge. Noble metals, known for their exceptional chemical stability under electrocatalytic conditions, have garnered considerable attention in this field. In this study, we report the successful synthesis of nanoporous CuAuPtPd quasi-high-entropy alloy (quasi-HEA) prism arrays through “melt quenching” and “dealloying” techniques. The as-obtained alloy demonstrates remarkable performance as an NRR electrocatalyst, achieving an impressive ammonia synthesis rate of 17.5 μg h−1 mg−1 at a potential of −0.2 V vs. RHE, surpassing many previously reported NRR catalysts. This work not only highlights the potential of quasi-HEAs as advanced NRR electrocatalysts but also provides valuable insights into the design of nanoporous multicomponent materials for sustainable energy and catalytic applications. Full article
Show Figures

Figure 1

14 pages, 3084 KiB  
Article
Metal Surface Treatments for Enhanced Heat Transfer in Metal–Composite Hybrid Structures
by Dong Hyun Kim, Wonhwa Lee, Jung Bin Park and Jea Uk Lee
Micromachines 2025, 16(4), 399; https://doi.org/10.3390/mi16040399 - 29 Mar 2025
Viewed by 539
Abstract
Recently, there has been an increasing emphasis on improving the performance of metal components across various industries, such as automotive, aerospace, electronics, medical devices, and military applications. However, the challenges related to efficient heat generation and transfer in equipment and devices are becoming [...] Read more.
Recently, there has been an increasing emphasis on improving the performance of metal components across various industries, such as automotive, aerospace, electronics, medical devices, and military applications. However, the challenges related to efficient heat generation and transfer in equipment and devices are becoming increasingly critical. A solution to these issues involves the adoption of a metal–composite hybrid structure, designed to efficiently manage heat, while substituting conventional metal components with polymer–carbon composites. In this study, nanopores were formed on the metal surface using an anodization process, serving as the basis for creating 3D-printed polymer/metal hybrid constructions. Various surface treatments, including plasma treatment, mixed electrolyte anodization, and etching, were applied to the metal surface to enhance the bonding strength between the 3D-printed polymer and the aluminum alloy. These processes were essential for developing lightweight polymer/metal hybrid structures utilizing a range of 3D-printed polymer filaments, such as polylactic acid, thermoplastic polyurethane, acrylonitrile butadiene styrene, polypropylene, thermoplastic polyester elastomer, and composite materials composed of polymer and carbon. In particular, the hybrid structures employing polymer–carbon composite materials demonstrated excellent heat dissipation characteristics, attributed to the remarkable conductive properties of carbon fibers. These technologies have the potential to effectively address the device heat problem by facilitating the development of lightweight hybrid structures applicable across various fields, including automotive, mobile electronics, medical devices, and military applications. Full article
(This article belongs to the Special Issue Micro/Nano Manufacturing of Electronic Devices)
Show Figures

Figure 1

14 pages, 4939 KiB  
Article
Intermetallic Fe2Mo Nanoparticles on Hierarchical Nanoporous Copper for Efficient Hydrogen Evolution Reaction
by Zhi-Lan Zhou, Yang Liu, Ying Wang, Shu-Pei Zeng, Hang Shi, Xing-You Lang and Qing Jiang
Catalysts 2025, 15(3), 278; https://doi.org/10.3390/catal15030278 - 16 Mar 2025
Viewed by 703
Abstract
Developing cost-effective and high-performance non-precious metal-based electrocatalysts for hydrogen evolution reaction is of crucial importance toward sustainable hydrogen energy systems. Herein, we prepare a novel hybrid electrode featuring intermetallic Fe2Mo nanoparticles anchored on the hierarchical nanoporous copper skeleton as robust hydrogen [...] Read more.
Developing cost-effective and high-performance non-precious metal-based electrocatalysts for hydrogen evolution reaction is of crucial importance toward sustainable hydrogen energy systems. Herein, we prepare a novel hybrid electrode featuring intermetallic Fe2Mo nanoparticles anchored on the hierarchical nanoporous copper skeleton as robust hydrogen evolution electrocatalyst by simple and scalable alloying and dealloying methods. By virtue of the highly active intermetallic Fe2Mo nanoparticles and unique bicontinuous nanoporous copper skeleton facilitating ion/molecule transportation, nanoporous Fe2Mo/Cu electrode shows excellent hydrogen evolution reaction electrocatalysis, with a low Tafel slope (~71 mV dec−1) to realize ampere-level current density of 1 A cm−2 at a low overpotential of ~200 mV in 1 M KOH electrolyte. Furthermore, nanoporous Fe2Mo/Cu electrode exhibits long−term stability exceeding 400 h to maintain ~250 mA cm−2 at an overpotential of 150 mV. Such outstanding electrocatalytic performance enables the nanoporous Fe2Mo/Cu electrode to be an attractive hydrogen evolution reaction catalyst for water splitting in the hydrogen economy. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Figure 1

16 pages, 22557 KiB  
Article
HRTEM Study of Desulfurization of Pt- and Pd-Rich Sulfides from New Caledonia Ophiolite
by Néstor Cano, José M. González-Jiménez, Fernando Gervilla and Thomas N. Kerestedjian
Minerals 2025, 15(1), 66; https://doi.org/10.3390/min15010066 - 12 Jan 2025
Viewed by 1049
Abstract
Oxygen-bearing platinum group minerals (O-bearing PGMs) are intergrown with base metal sulfides (BMS, e.g., pentlandite–[NiFe]9S8) within fractures in chromite grains from chromitite bodies on Ouen Island, New Caledonia. These PGMs are hosted in chlorite and serpentine, which formed during [...] Read more.
Oxygen-bearing platinum group minerals (O-bearing PGMs) are intergrown with base metal sulfides (BMS, e.g., pentlandite–[NiFe]9S8) within fractures in chromite grains from chromitite bodies on Ouen Island, New Caledonia. These PGMs are hosted in chlorite and serpentine, which formed during serpentinization of olivine and pyroxene. The O-bearing PGM grains are polygonal, show microfracturing (indicating volume loss), and contain Pt-Pd-rich sulfide remnants, suggesting pseudomorphic replacement of primary (magmatic) sulfides. They display chemical zonation, with Pt(-Pd-Ni-Fe) relict sulfide cores replaced by Pt-Fe-Ni oxidized alloy mantles and Pt-Cu-Fe(-Pd) alloy rims (tulameenite), indicating desulfurization. The core and mantle show a nanoporous structure, interpreted as the result of coupled dissolution–reprecipitation reactions between magmatic sulfides and low fO2fS2 serpentinite-related fluids, probably formed during olivine transformation to serpentine + magnetite (early stages of serpentinization). This fluid infiltrated magmatic sulfides (PGE-rich and BMS), degrading them to secondary products and releasing S and metals that were accommodated in the mantle and rim of O-bearing PGMs. Upon olivine exhaustion, an increase in fO2 might have stabilized Pt-Fe-O compounds (likely Pt0/Pt-Fe + Fe oxyhydroxides) alongside Ni-Fe alloys. Our results show that post-magmatic desulfurization of primary sulfides produces complex nano-scale intergrowths, mainly driven by changes in the fluid’s physicochemical properties during serpentinization. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

15 pages, 5260 KiB  
Article
Nanoporous Au Behavior in Methyl Orange Solutions
by Andrea Pinna, Giorgio Pia, Nicola Melis, Mirko Prato, Maria Giorgia Cutrufello, Elisa Sogne, Andrea Falqui and Luca Pilia
Molecules 2024, 29(9), 1950; https://doi.org/10.3390/molecules29091950 - 24 Apr 2024
Viewed by 1147
Abstract
Nanoporous (NP) gold, the most extensively studied and efficient NP metal, possesses exceptional properties that make it highly attractive for advanced technological applications. Notably, its remarkable catalytic properties in various significant reactions hold enormous potential. However, the exploration of its catalytic activity in [...] Read more.
Nanoporous (NP) gold, the most extensively studied and efficient NP metal, possesses exceptional properties that make it highly attractive for advanced technological applications. Notably, its remarkable catalytic properties in various significant reactions hold enormous potential. However, the exploration of its catalytic activity in the degradation of water pollutants remains limited. Nevertheless, previous research has reported the catalytic activity of NP Au in the degradation of methyl orange (MO), a toxic azo dye commonly found in water. This study aims to investigate the behavior of nanoporous gold in MO solutions using UV-Vis absorption spectroscopy and high-performance liquid chromatography. The NP Au was prepared by chemical removal of silver atoms of an AuAg precursor alloy prepared by ball milling. Immersion tests were conducted on both pellets and powders of NP Au, followed by examination of the residual solutions. Additionally, X-ray photoelectron spectroscopy and electrochemical impedance measurements were employed to analyze NP Au after the tests. The findings reveal that the predominant and faster process involves the partially reversible adsorption of MO onto NP Au, while the catalytic degradation of the dye plays a secondary and slower role in this system. Full article
(This article belongs to the Special Issue New Materials and Catalysis in Environmental Protection)
Show Figures

Figure 1

14 pages, 9455 KiB  
Article
Self-Supporting np-AlFeNiO Bifunctional Electrode Material for Electrochemical Water Splitting Prepared by Electrooxidation
by Zhihui Ma, Wence Xu, Zhonghui Gao, Yanqin Liang, Hui Jiang, Zhaoyang Li, Zhenduo Cui, Huifang Zhang and Shengli Zhu
Energies 2024, 17(7), 1591; https://doi.org/10.3390/en17071591 - 26 Mar 2024
Cited by 1 | Viewed by 1206
Abstract
Hydrogen production through water splitting is a promising path to develop renewable green energy. Effective, stable, and low-cost catalysts are the key to water splitting. In the present work, a series of self-supporting nanoporous alloys are prepared by using a dealloying process followed [...] Read more.
Hydrogen production through water splitting is a promising path to develop renewable green energy. Effective, stable, and low-cost catalysts are the key to water splitting. In the present work, a series of self-supporting nanoporous alloys are prepared by using a dealloying process followed by electrooxidation. Among them, the np-AlFeNiO-4s sample exhibits remarkable activity (10 mA cm−2 at 32 mV for the HER and 278 mV for the OER) and good long-term stability (100 h) in alkaline conditions for both the HER and the OER. It only requires 1.56 V to reach 10 mA cm−2 current density for total water splitting performance. The very short time of electrooxidation can significantly improve the HER performance. Electrooxidation makes the metal and metal oxide sites on the electrode surface effectively coupled, which greatly enhances the kinetic rate of the Volmer and Heyrovsky steps. Appropriate electrooxidation is a rapid and easy way to improve the activity of the electrocatalyst, which has a broad application prospect in electrochemical water splitting. Full article
(This article belongs to the Special Issue New Trends and Research in Fuel Cells and Energy Conversion/Storage)
Show Figures

Graphical abstract

17 pages, 3458 KiB  
Article
Acid Treatments of Ti-Based Metallic Glasses for Improving Corrosion Resistance in Implant Applications
by Nora Fernández-Navas, Viktoriia Shtefan, Martin Hantusch and Annett Gebert
Metals 2024, 14(2), 241; https://doi.org/10.3390/met14020241 - 16 Feb 2024
Cited by 2 | Viewed by 1695
Abstract
Ti-based bulk metallic glasses are promising materials for metallic bone implants, mainly due to their mechanical biofunctionality. A major drawback is their limited corrosion resistance, with high sensitivity to pitting. Thus, effective surface treatments for these alloys must be developed. This work investigates [...] Read more.
Ti-based bulk metallic glasses are promising materials for metallic bone implants, mainly due to their mechanical biofunctionality. A major drawback is their limited corrosion resistance, with high sensitivity to pitting. Thus, effective surface treatments for these alloys must be developed. This work investigates the electrochemical treatment feasibility of nitric acid (HNO3) solution for two bulk glass-forming alloys. The surface states obtained at different anodic potentials are characterized with electron microscopy and Auger electron spectroscopy. The corrosion behavior of the treated glassy alloys is analyzed via comparison to non-treated states in phosphate-buffered saline solution (PBS) at 37 °C. For the glassy Ti47Zr7.5Cu38Fe2.5Sn2Si1Ag2 alloy, the pre-treatment causes pseudo-dealloying, with a transformation from naturally passivated surfaces to Ti- and Zr-oxide nanoporous layers and Cu-species removal from the near-surface regions. This results in effective suppression of chloride-induced pitting in PBS. The glassy Ti40Zr10Cu34Pd14Sn2 alloy shows lower free corrosion activity in HNO3 and PBS due to Pd stabilizing its strong passivity. However, this alloy undergoes pitting under anodic conditions. Surface pre-treatment results in Cu depletion but causes enrichment of Pd species and non-homogeneous surface oxidation. Therefore, for this glassy alloy, pitting cannot be completely inhibited in PBS. Concluding, anodic treatments in HNO3 are more suitable for Pd-free glassy Ti-based alloys. Full article
(This article belongs to the Special Issue Recent Surface Treatments of Metals and Their Alloys)
Show Figures

Figure 1

18 pages, 24962 KiB  
Article
Feasibility Study on the Generation of Nanoporous Metal Structures by Means of Selective Alloy Depletion in Halogen-Rich Atmospheres
by Jörg Weise, Birgit Uhrlaub, Dirk Lehmhus, Joachim Baumeister, Kerstin Hantzsche and Karsten Thiel
Materials 2024, 17(2), 498; https://doi.org/10.3390/ma17020498 - 20 Jan 2024
Viewed by 1189
Abstract
A new approach to produce nanoporous metals has been investigated, which is based on the dealloying of bi- or multi-component alloys. Depletion and pore formation of the alloy substrate are obtained by the transport of certain alloy components at high temperatures via volatile [...] Read more.
A new approach to produce nanoporous metals has been investigated, which is based on the dealloying of bi- or multi-component alloys. Depletion and pore formation of the alloy substrate are obtained by the transport of certain alloy components at high temperatures via volatile halogen compounds. These halogen compounds are transferred to materials acting as sinks based on their higher affinity to the respective components, and chemically bound there. Transfer via volatile halogen compounds is known from the pack cementation coating process and from high-temperature corrosion in certain industrial atmospheres. The approach was tested on different precursor alloys: Ti-43.5Al-4Nb-1Mo-0.1B (TNM-B1), TiNb42, and AlCu. Both dealloying effects and micro-scale pore formation were observed. The detailed size of the porous structures is in the range of 50 nm for both TNM-B1 and TiNB42 and 500 nm for AlCu. Full article
(This article belongs to the Section Porous Materials)
Show Figures

Figure 1

13 pages, 8881 KiB  
Article
The Electrochemical Actuation Performances of Nanoporous Ternary AlCoCu Alloy with a Unique Nanosheet Structure
by Xiao Chen, Fuquan Tan, Jianfeng Wang, Kunpeng Zhao, Yaoguang Wang, Jie Zhang and Haixia Liu
Materials 2023, 16(21), 6942; https://doi.org/10.3390/ma16216942 - 29 Oct 2023
Cited by 1 | Viewed by 1467
Abstract
Compared to traditional actuators (such as piezoelectric ceramics), metal actuators possess the advantages of a low energy consumption, large strain amplitude, and high strain energy density. However, most of the existing metal actuators with an excellent comprehensive performance are composed of precious metals, [...] Read more.
Compared to traditional actuators (such as piezoelectric ceramics), metal actuators possess the advantages of a low energy consumption, large strain amplitude, and high strain energy density. However, most of the existing metal actuators with an excellent comprehensive performance are composed of precious metals, which are limited by high costs and have almost no possibility for large-scale production in the future. This study focuses on non-precious metal materials and exploits a one-step chemical dealloying method to prepare bulk nanoporous (NP) CoCuAl actuators (NP-CCA) from Al70Co20Cu10 alloy. The microstructure and actuation properties of the NP-CCA were analyzed in detail. The dense continuous nanoscale pores provide an excellent network connectivity for a large strain response, enabling the NP-CCA to achieve a strain amplitude of up to 1.19% (more than eight and two times that of NP-Pt and NP-Ag, respectively), comparable to precious metal actuators. In addition, the NP-CCA possesses a high strain energy density, which is prominent in many precious metal actuation materials (such as NP-Au, NP-Ag, and NP-Pt). Full article
Show Figures

Figure 1

37 pages, 9726 KiB  
Review
Recent Advances in Bimetallic Nanoporous Gold Electrodes for Electrochemical Sensing
by Md. Shafiul Islam, Subrata Banik and Maryanne M. Collinson
Nanomaterials 2023, 13(18), 2515; https://doi.org/10.3390/nano13182515 - 8 Sep 2023
Cited by 4 | Viewed by 3629
Abstract
Bimetallic nanocomposites and nanoparticles have received tremendous interest recently because they often exhibit better properties than single-component materials. Improved electron transfer rates and the synergistic interactions between individual metals are two of the most beneficial attributes of these materials. In this review, we [...] Read more.
Bimetallic nanocomposites and nanoparticles have received tremendous interest recently because they often exhibit better properties than single-component materials. Improved electron transfer rates and the synergistic interactions between individual metals are two of the most beneficial attributes of these materials. In this review, we focus on bimetallic nanoporous gold (NPG) because of its importance in the field of electrochemical sensing coupled with the ease with which it can be made. NPG is a particularly important scaffold because of its unique properties, including biofouling resistance and ease of modification. In this review, several different methods to synthesize NPG, along with varying modification approaches are described. These include the use of ternary alloys, immersion–reduction (chemical, electrochemical, hybrid), co-electrodeposition–annealing, and under-potential deposition coupled with surface-limited redox replacement of NPG with different metal nanoparticles (e.g., Pt, Cu, Pd, Ni, Co, Fe, etc.). The review also describes the importance of fully characterizing these bimetallic nanocomposites and critically analyzing their structure, surface morphology, surface composition, and application in electrochemical sensing of chemical and biochemical species. The authors attempt to highlight the most recent and advanced techniques for designing non-enzymatic bimetallic electrochemical nanosensors. The review opens up a window for readers to obtain detailed knowledge about the formation and structure of bimetallic electrodes and their applications in electrochemical sensing. Full article
Show Figures

Figure 1

20 pages, 3457 KiB  
Article
Effect of Functional Nanoporous TiO2 Film Obtained on Ti6Al4V Implant Alloy to Improve Resistance in Biological Solution for Inflammatory Conditions
by Lidia Benea, Anca Ravoiu Lupu, Iulian Bounegru and Petrica Vizureanu
Int. J. Mol. Sci. 2023, 24(10), 8529; https://doi.org/10.3390/ijms24108529 - 10 May 2023
Cited by 4 | Viewed by 2188
Abstract
The metallic titanium-based biomaterials are sensitive to corrosion-induced degradation in biological fluids in the presence of inflammatory conditions containing reactive oxygen species (ROS). Excess ROS induces oxidative modification of cellular macromolecules, inhibits protein function, and promotes cell death. In addition, ROS could promote [...] Read more.
The metallic titanium-based biomaterials are sensitive to corrosion-induced degradation in biological fluids in the presence of inflammatory conditions containing reactive oxygen species (ROS). Excess ROS induces oxidative modification of cellular macromolecules, inhibits protein function, and promotes cell death. In addition, ROS could promote implant degradation by accelerating the corrosive attack of biological fluids. The functional nanoporous titanium oxide film is obtained on titanium alloy to study the effect on implant reactivity in biological fluid with reactive oxygen species such as hydrogen peroxide, which are present in inflammations. The TiO2 nanoporous film is obtained by electrochemical oxidation at high potential. The untreated Ti6Al4V implant alloy and nanoporous titanium oxide film are comparatively evaluated for corrosion resistance in biological solution by Hank’s and Hank’s doped with hydrogen peroxide by electrochemical methods. The results showed that the presence of the anodic layer significantly improved the resistance of the titanium alloy to corrosion-induced degradation in biological solutions under inflammatory conditions. Full article
Show Figures

Figure 1

17 pages, 7738 KiB  
Article
Enhancing the Surface Hydrophilicity of an Aluminum Alloy Using Two-Step Anodizing and the Effect on Inkjet Printing Characteristics
by Youngyoon Kim and Wook-Bae Kim
Coatings 2023, 13(2), 232; https://doi.org/10.3390/coatings13020232 - 19 Jan 2023
Cited by 6 | Viewed by 3993
Abstract
Aluminum alloy anodizing is widely used in the surface treatment industry to provide surface protection and decoration. The resulting anodic aluminum oxide film enables durable printing and dyeing of metals owing to its nanoporous structure, which easily absorbs ink. Conventional one-step anodizing of [...] Read more.
Aluminum alloy anodizing is widely used in the surface treatment industry to provide surface protection and decoration. The resulting anodic aluminum oxide film enables durable printing and dyeing of metals owing to its nanoporous structure, which easily absorbs ink. Conventional one-step anodizing of Al 1050 using sulfuric acid was observed to form a surface with small pore diameters less than 10 nm and lead to an average contact angle of 30°, whereas two-step anodizing yielded a regular pore pattern with significantly larger pores, reducing the contact angle to less than 20°. This change in pore structure and the corresponding enhanced hydrophilicity directly impacted inkjet printing characteristics; inkjet printing of 13 pL droplets on the one-step and two-step anodized surfaces showed that the average dot diameter varied from 72.2 μm to 48.0 μm according to applied voltage and anodizing time. The ink dot diameters on the two-step film were smaller than those on the one-step film produced under the same conditions, and the dot diameters decreased as the average pore diameter increased under an increasing anodizing voltage up to 20 V, indicating improved hydrophilicity. The pore volumes produced by two-step anodizing were larger, facilitating ink droplet absorption during spreading, which was examined by elemental analysis of cross-sections of the ink-filled porous specimen. Full article
Show Figures

Figure 1

8 pages, 2702 KiB  
Article
Magnetic Studies of Superconductivity in the Ga-Sn Alloy Regular Nanostructures
by Marina V. Likholetova, Elena V. Charnaya, Evgenii V. Shevchenko, Min Kai Lee, Lieh-Jeng Chang, Yurii A. Kumzerov and Aleksandr V. Fokin
Nanomaterials 2023, 13(2), 280; https://doi.org/10.3390/nano13020280 - 9 Jan 2023
Cited by 3 | Viewed by 1757
Abstract
For applications of nanolattices in low-temperature nanoelectronics, the inter-unit space can be filled with superconducting metallic alloys. However, superconductivity under nanoconfinement is expected to be strongly affected by size-effects and other factors. We studied the magnetic properties and structure of the Ga-Sn eutectic [...] Read more.
For applications of nanolattices in low-temperature nanoelectronics, the inter-unit space can be filled with superconducting metallic alloys. However, superconductivity under nanoconfinement is expected to be strongly affected by size-effects and other factors. We studied the magnetic properties and structure of the Ga-Sn eutectic alloy within regular nanopores of an opal template, to understand the specifics of the alloy superconductivity. Two superconducting transitions were observed, in contrast to the bulk alloy. The transitions were ascribed to the segregates with the structures of tetragonal tin and a particular gallium polymorph. The superconducting-phase diagram was constructed, which demonstrated crossovers from the positive- to the common negative-curvature of the upper critical-field lines. Hysteresis was found between the susceptibilities obtained at cooling and warming in the applied magnetic field. Full article
(This article belongs to the Special Issue Research on Nano-Lattice)
Show Figures

Figure 1

15 pages, 3955 KiB  
Article
Investigation of Hydrogen Production Performance Using Nanoporous NiCr and NiV Alloys in KBH4 Hydrolysis
by Meryem Sena Akkus
Energies 2022, 15(24), 9547; https://doi.org/10.3390/en15249547 - 16 Dec 2022
Cited by 4 | Viewed by 2989
Abstract
Studies of storage and production of hydrogen, which is an alternative to fossil fuels, have been intensified. Hydrogen production from metal borohydrides via catalyst is very attractive because of its advantages, such as controlled production, high hydrogen content, nontoxicity, etc. In this study, [...] Read more.
Studies of storage and production of hydrogen, which is an alternative to fossil fuels, have been intensified. Hydrogen production from metal borohydrides via catalyst is very attractive because of its advantages, such as controlled production, high hydrogen content, nontoxicity, etc. In this study, the catalytic performances of nanoporous nickel–chromium alloy and nickel–vanadium alloy catalysts prepared with magnetron sputtering in hydrolysis of potassium borohydride, which is a hydrogen storage material, were investigated. Parameters that affected the hydrolysis reaction rate, such as the temperature, the amount of catalyst, and the volume of 0.5 M HCl solution were investigated using response surface methodology. In addition, the prepared catalysts were characterized with XRD and FE-SEM analysis, and the remaining solutions after the reactions were characterized with FE-SEM/EDS analysis. Using response surface methodology, optimum conditions for the maximum hydrogen production rate were determined to be 1.65 g of catalyst, 6% KBH4, 3% NaOH, and 7 mL of 0.5 M HCl at 333 K. Under these conditions, the hydrogen production rates were calculated as 68.9 L·min−1·gcat−1 and 76.5 L·min−1·gcat−1 for NiCr and NiV, respectively. Full article
(This article belongs to the Topic Hydrogen Generation, Storage, and Utilization)
Show Figures

Figure 1

15 pages, 11007 KiB  
Article
Potentiostatic Dealloying Fabrication and Electrochemical Actuation Performance of Bulk Nanoporous Palladium
by Fuquan Tan, Bin Yu, Qingguo Bai and Zhonghua Zhang
Metals 2022, 12(12), 2153; https://doi.org/10.3390/met12122153 - 15 Dec 2022
Cited by 5 | Viewed by 2330
Abstract
Metallic actuators increasingly exhibit superiority over conventional actuators (such as piezoelectric ceramics) via low energy consumption and large strain amplitude. Large strain amplitude and high strain energy density (or work density) are required for an actuator with excellent comprehensive performance. Herein, we fabricated [...] Read more.
Metallic actuators increasingly exhibit superiority over conventional actuators (such as piezoelectric ceramics) via low energy consumption and large strain amplitude. Large strain amplitude and high strain energy density (or work density) are required for an actuator with excellent comprehensive performance. Herein, we fabricated bulk nanoporous Pd (np-Pd) with a dense nanoporous structure by two-step potentiostatic dealloying of as-annealed Ni–Pd alloy with chemical corrosion resistance, and investigated the dealloying behaviors as well as electrochemical actuation performance. A visible current density oscillation occurred during dealloying, which is related to formation/dissolution of the passivating film. Additionally, since the dense and continuous ligaments establish a good network connectivity for large strain response, the np-Pd achieves a strain amplitude of up to 3.74% and high strain energy density, which stands out among many actuator materials (e.g., np-AuPt, np-Ni, and np-AlNiCu). Our study provides a useful guidance for fabricating metallic actuators with excellent comprehensive performance. Full article
(This article belongs to the Special Issue Advances in Nanoporous Metallic Materials)
Show Figures

Figure 1

Back to TopTop