Effect of Solidification Time on Microstructural, Mechanical and Fatigue Properties of Solution Strengthened Ferritic Ductile Iron
Abstract
1. Introduction
2. Experimental Procedure
3. Results
3.1. Thermal Analysis
3.2. Tensile Tests
3.3. Fatigue Tests
3.4. Microstructure and Fractography
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- UNI EN 1563:2012. Founding—Spheroidal Graphite Cast Irons; UNI: Milano, Italy, 2012. [Google Scholar]
- Larker, R. Solution strengthened ferritic ductile iron ISO 1083/JS/500-10 provides superior consistent properties in hydraulic rotators. Overseas Foundry 2009, 6, 343–351. [Google Scholar]
- ASTM E2567-16a. Standard Test Method for Determining Nodularity and Nodule Count in Ductile Iron Using Image Analysis; ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar]
- Ceschini, L.; Morri, A.; Morri, A. Effects of Casting Size on Microstructure and Mechanical Properties of Spheroidal and Compacted Graphite Cast Irons: Experimental Results and Comparison with International Standards. J. Mater. Eng. Perform. 2017, 26, 2583–2592. [Google Scholar] [CrossRef]
- Shinde, V.D.; Ravi, B.; Narasimhan, K. Solidification behaviour and mechanical properties of ductile iron castings with varying thickness. Int. J. Cast Met. Res. 2012, 25, 364–373. [Google Scholar] [CrossRef]
- Bockus, S.; Venckunas, A.; Zaldarys, G. Relation between section thickness, microstructure and mechanical properties of ductile iron castings. Mater. Sci. 2008, 14, 115–118. [Google Scholar]
- Minnebo, P.; Nilsson, K.-F.; Blagoeva, D. Tensile, compression and fracture properties of thick-walled ductile cast iron components. J. Mater. Eng. Perform. 2007, 16, 35–45. [Google Scholar] [CrossRef]
- Ecob, C.M. A Review of Common Metallurgical Defects in Ductile Cast Iron; Customer Services Manager, Elkem AS, Foundry Products Division: Oslo, Norway, 2005. [Google Scholar]
- Regordosa, N. Llorca-Isern, Microscopic Characterization of Different Shrinkage Defects in Ductile Irons and their Relation with Composition and Inoculation Process. Int. J. Met. 2017, 11, 778–789. [Google Scholar]
- Borsato, T.; Ferro, P.; Berto, F.; Carollo, C. Fatigue strength improvement of heavy-section pearlitic ductile iron castings by in-mould inoculation treatment. Int. J. Fatigue 2017, 102, 221–227. [Google Scholar] [CrossRef]
- Källbom, R.; Hamberg, K.; Wessén, M.; Björkegren, L.E. On solidification sequence of ductile iron castings containing chunky graphite. Mater. Sci. Eng. A 2005, 413, 346–351. [Google Scholar] [CrossRef]
- Ferro, P.; Fabrizi, A.; Cervo, R.; Carollo, C. Effect of inoculant containing rare earth metals and bismuth on microstructure and mechanical properties of heavy section near-eutectic ductile iron castings. J. Mater. Process. Technol. 2013, 213, 1601–1608. [Google Scholar] [CrossRef]
- Foglio, E.; Lusuardi, D.; Pola, A.; La Vecchia, G.M.; Gelfi, M. Fatigue design of heavy section ductile irons: Influence of chunky graphite. Mater. Des. 2016, 111, 353–361. [Google Scholar] [CrossRef]
- Borsato, T.; Berto, F.; Ferro, P.; Carollo, C. Influence of solidification defects on the fatigue behaviour of heavy-section silicon solution–strengthened ferritic ductile cast irons. Fatigue Fract. Eng. Mater. Struct. 2018. [Google Scholar] [CrossRef]
- Mourujärvi, A.; Widell, K.; Saukkonen, T.; Hänninen, H. Influence of chunky graphite on mechanical and fatigue properties of heavy-section cast iron. Fatigue Fract. Eng. Mater. Struct. 2009, 32, 379–390. [Google Scholar]
- Foglio, E.; Gelfi, M.; Pola, A.; Goffelli, S.; Lusuardi, D. Fatigue Characterization and Optimization of the Production Process of Heavy Section Ductile Iron Castings. Int. J. Met. 2017, 11, 33–43. [Google Scholar] [CrossRef]
- Borsato, T.; Ferro, P.; Berto, F.; Carollo, C. Mechanical and fatigue properties of heavy section solution strengthened ferritic ductile iron castings. Adv. Eng. Mat. 2016, 18, 2070–2075. [Google Scholar] [CrossRef]
- Borsato, T.; Ferro, P.; Berto, F. Novel method for the fatigue strength assessment of heavy sections made by ductile cast iron in presence of solidification defects. Fatigue Fract. Eng. Mater. Struct. 2018. [Google Scholar] [CrossRef]
- Ferro, P.; Lazzarin, L.; Berto, F. Fatigue properties of ductile cast iron containing chunky graphite. Mater. Sci. Eng. A 2012, 554, 122–128. [Google Scholar] [CrossRef]
- Collini, L.; Pirondi, A. Fatigue crack growth analysis in porous ductile cast iron microstructure. Int. J. Fatigue 2014, 62, 258–265. [Google Scholar] [CrossRef]
- Bleicher, C.; Kaufmann, H.; Melz, T. Fatigue Assessment of Nodular Cast Iron with Material Imperfections. SAE Int. J. Engines 2017, 10, 340–349. [Google Scholar] [CrossRef]
- Luo, J.; Bowen, P.; Harding, R.A. Evaluation of the fatigue behavior of ductile irons with various matrix microstructures. Met. Mater. Trans. A 2002, 33, 3719–3730. [Google Scholar] [CrossRef]
- Nadot, Y.; Mendez, J.; Ranganathan, N. Influence of casting defects on the fatigue limit of nodular cast iron. Int. J. Fatigue 2004, 26, 311–319. [Google Scholar] [CrossRef]
- Kasvayee, K.A.; Ghassemali, E.; Svensson, I.L.; Olofsson, J.; Jarfors, A.E.W. Characterization and modeling of the mechanical behavior of high silicon ductile iron. Mater. Sci. Eng. A 2017, 708, 159–170. [Google Scholar] [CrossRef]
- Davis, J.R. (Ed.) ASM Specialty Handbook: Cast Irons; ASM International: Almere, The Netherlands, 1996. [Google Scholar]
- ISO 6892-1:2016. Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature; ISO: Geneva, Switzerland, 2016. [Google Scholar]
- Stefanescu, D.M. Thermal analysis—Theory and applications in metalcasting. Int. J. Met. 2015, 9, 7–22. [Google Scholar] [CrossRef]
- Shinde, V.D. Thermal Analysis of Ductile Iron Casting. IntechOpen 2018. [Google Scholar] [CrossRef]
- Sertucha, J.; Larranaga, P.; Lacaze, J.; Insausti, M. Experimental investigation on the effect of copper upon eutectoid transformation of as-cast and austenitized spheroidal graphite cast iron. Int. J. Met. 2010, 4, 51–58. [Google Scholar] [CrossRef]
- Labrecque, C.; Gagne, M. Review ductile iron: Fifty years of continuous development. Can. Metall. Q. 1998, 37, 343–378. [Google Scholar] [CrossRef]
- Zykova, A.; Lychagin, D.; Chumaevsky, A.; Popova, N.; Kurzina, I. Influence of Ultrafine Particles on Structure, Mechanical Properties, and Strengthening of Ductile Cast Iron. Metals 2018, 8, 559. [Google Scholar] [CrossRef]
- ISO 12107:2012. Metallic Materials—Fatigue Testing—Statistical Planning and Analysis of Data; ISO: Geneva, Switzerland, 2012. [Google Scholar]
C | Si | S | P | Mn | Mg | Ce | Ceq |
---|---|---|---|---|---|---|---|
3.31 | 3.25 | 0.008 | 0.025 | 0.13 | 0.050 | 0.0018 | 4.40 |
Cast Sample | Thickness [mm] | Solidification Time [min] | σUTS [MPa] | σy 0.2% [MPa] | εR % |
---|---|---|---|---|---|
Round bar shaped type b | 25 | 2.5 | 507 (0.5) | 395 (0.5) | 19.8 (0.1) |
Y-shaped type III | 50 | 9.8 | 492 (1.0) | 389 (0.6) | 17.1 (0.1) |
Y-shaped type IV (1) | 75 | 16.2 | 487 (0.6) | 386 (0.6) | 17.2 (0.9) |
Y-shaped type IV (2) | 75 | 22.1 | 468 (2.1) | 375 (1.2) | 13.0 (1.0) |
Cast Sample | Thickness [mm] | σa [MPa] | Tσ |
---|---|---|---|
Y-shaped type III | 50 | 145 | 1.13 |
Y-shaped type IV | 75 | 138 | 1.30 |
Position | Y-Shaped Type III | Y-Shaped Type IV |
---|---|---|
1 | 8.5 min | 14.5 min |
2 | 11.3 min | 18.1 min |
3 | 14.5 min | 22.1 min |
Solidification Time | σa [MPa] | Tσ |
---|---|---|
8–12 min | 147 | 1.10 |
≈15 min | 143 | 1.23 |
18–22 min | 136 | 1.25 |
Cast Sample | Position | Nodule Count [Nodules/mm2] | Mean Nodule Diameter [μm] | Nodularity |
---|---|---|---|---|
Round bar | - | 304 | 19 (5.5) | 93% |
Y III | 1 | 115 | 29 (9) | 85% |
2 | 98 | 30 (11) | 80% | |
3 | 90 | 28 (10) | 77% | |
Y IV | 1 | 95 | 29 (9.5) | 82% |
2 | 84 | 31 (11) | 76% | |
3 | 63 | 33 (13) | 70% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borsato, T.; Ferro, P.; Berto, F.; Carollo, C. Effect of Solidification Time on Microstructural, Mechanical and Fatigue Properties of Solution Strengthened Ferritic Ductile Iron. Metals 2019, 9, 24. https://doi.org/10.3390/met9010024
Borsato T, Ferro P, Berto F, Carollo C. Effect of Solidification Time on Microstructural, Mechanical and Fatigue Properties of Solution Strengthened Ferritic Ductile Iron. Metals. 2019; 9(1):24. https://doi.org/10.3390/met9010024
Chicago/Turabian StyleBorsato, Thomas, Paolo Ferro, Filippo Berto, and Carlo Carollo. 2019. "Effect of Solidification Time on Microstructural, Mechanical and Fatigue Properties of Solution Strengthened Ferritic Ductile Iron" Metals 9, no. 1: 24. https://doi.org/10.3390/met9010024
APA StyleBorsato, T., Ferro, P., Berto, F., & Carollo, C. (2019). Effect of Solidification Time on Microstructural, Mechanical and Fatigue Properties of Solution Strengthened Ferritic Ductile Iron. Metals, 9(1), 24. https://doi.org/10.3390/met9010024