Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (34,949)

Search Parameters:
Keywords = thickness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 15569 KiB  
Article
Studies on the Chemical Etching and Corrosion Resistance of Ultrathin Laminated Alumina/Titania Coatings
by Ivan Netšipailo, Lauri Aarik, Jekaterina Kozlova, Aivar Tarre, Maido Merisalu, Kaisa Aab, Hugo Mändar, Peeter Ritslaid and Väino Sammelselg
Corros. Mater. Degrad. 2025, 6(3), 36; https://doi.org/10.3390/cmd6030036 (registering DOI) - 2 Aug 2025
Abstract
We investigated the protective properties of ultrathin laminated coatings, comprising three pairs of Al2O3 and TiO2 sublayers with coating thicknesses < 150 nm, deposited on AISI 310 stainless steel (SS) and Si (100) substrates at 80–500 °C by atomic [...] Read more.
We investigated the protective properties of ultrathin laminated coatings, comprising three pairs of Al2O3 and TiO2 sublayers with coating thicknesses < 150 nm, deposited on AISI 310 stainless steel (SS) and Si (100) substrates at 80–500 °C by atomic layer deposition. The coatings were chemically etched and subjected to corrosion, ultrasound, and thermal shock tests. The coating etching resistance efficiency (Re) was determined by measuring via XRF the change in the coating sublayer mass thickness after etching in hot 80% H2SO4. The maximum Re values of ≥98% for both alumina and titania sublayers were obtained for the laminates deposited at 250–400 °C on both substrates. In these coatings, the titania sublayers were crystalline. The lowest Re values of 15% and 50% for the alumina and titania sublayers, respectively, were measured for laminate grown at 80 °C on silicon. The coatings deposited at 160–200 °C demonstrated a delay in the increase of Re values, attributed to the changes in the titania sublayers before full crystallization. Coatings grown at higher temperatures were also more resistant to ultrasound and liquid nitrogen treatments. In contrast, coatings deposited at 125 °C on SS had better corrosion protection, as demonstrated via electrochemical impedance spectroscopy and a standard immersion test in FeCl3 solution. Full article
Show Figures

Figure 1

17 pages, 1635 KiB  
Article
Predicting Relative Density of Pure Magnesium Parts Produced by Laser Powder Bed Fusion Using XGBoost
by Kristijan Šket, Snehashis Pal, Janez Gotlih, Mirko Ficko and Igor Drstvenšek
Appl. Sci. 2025, 15(15), 8592; https://doi.org/10.3390/app15158592 (registering DOI) - 2 Aug 2025
Abstract
In this work, Laser Powder Bed Fusion (LPBF), an additive manufacturing (AM) process, was optimised to produce pure magnesium components. The focus of the presented work is on the prediction of the relative product density using the machine learning model XGBoost to improve [...] Read more.
In this work, Laser Powder Bed Fusion (LPBF), an additive manufacturing (AM) process, was optimised to produce pure magnesium components. The focus of the presented work is on the prediction of the relative product density using the machine learning model XGBoost to improve the production process and thus the usability of the material for practical use. Experimental tests with different parameters, laser power, scanning speed and layer thickness, and fixed parameters, track overlapping and hatching distance, were analysed and resulted in relative material densities between 89.29% and 99.975%. The XGBoost model showed high predictive power, achieving an R2 test result of 0.835, a mean absolute error (MAE) of 0.728 and a root mean square error (RMSE) of 0.982. Feature importance analysis showed that the interaction of laser power and scanning speed had the largest influence on the predictions at 35.9%, followed by laser power × layer thickness at 29.0%. The individual contributions were laser power (11.8%), scanning speed (10.7%), scanning speed × layer thickness (9.0%) and layer thickness (3.6%). These results provide a data-based method for LPBF parameter settings that improve manufacturing efficiency and component performance in the aerospace, automotive and biomedical industries and identify optimal parameter regions for a high density, serving as a pre-optimisation stage. Full article
Show Figures

Figure 1

17 pages, 4156 KiB  
Article
Numerical and Experimental Study on Deposition Mechanism of Laser-Assisted Plasma-Sprayed Y2O3 Coating
by Hui Zou, Xutao Zhao, Bin Fu, Huabao Yang and Chengda Sun
Coatings 2025, 15(8), 904; https://doi.org/10.3390/coatings15080904 (registering DOI) - 2 Aug 2025
Abstract
Due to the limitations of high speed and short time in plasma-spraying experiments, this study established a simulation model of Y2O3 multi-particle deposition to discuss the influence of laser loading on coating-deposition behavior and performance. According to the simulation results, [...] Read more.
Due to the limitations of high speed and short time in plasma-spraying experiments, this study established a simulation model of Y2O3 multi-particle deposition to discuss the influence of laser loading on coating-deposition behavior and performance. According to the simulation results, the temperature of coating particles under laser loading displays a gradient distribution, with the surface having the highest temperature. The particles deposit on the substrate to form uniform pits of a certain depth. Plastic deformation causes maximum stress to occur at the edges of the pits and maximum strain to occur on the sidewall of the pits. The deposition region had both compressive and tensile stresses, and laser loading greatly reduced the tensile stresses’ magnitude while having less of an impact on the particle strains. Laser assistance promotes further melting of particles, reduces coating thickness, lowers coating porosity to 3.94%, increases hardness to 488 MPa, reduces maximum pore size from 68 µm to 32 µm, and causes particle sputtering to gradually evolve from being disc-shaped to being finger-shaped, creating cavities at the coating edges. The comparison between the surface morphology and the cross-section pores of the experimentally prepared coating verified the rationality and viability of the simulation work. Full article
(This article belongs to the Section Laser Coatings)
Show Figures

Figure 1

10 pages, 784 KiB  
Article
Effect of Malnutrition on Femoral Cartilage Thickness in Pediatric Patients
by Şükrü Güngör, Raikan Büyükavcı, Fatma İlknur Varol, Emre Gök and Semra Aktürk
Children 2025, 12(8), 1021; https://doi.org/10.3390/children12081021 (registering DOI) - 2 Aug 2025
Abstract
Background/Objectives: Malnutrition is an imbalance of nutrients required for growth, development, and organ function. Its impact on bone development is known, but its effects on cartilage remain unclear. This study aimed to evaluate the femoral cartilage thickness in children with primary malnutrition. [...] Read more.
Background/Objectives: Malnutrition is an imbalance of nutrients required for growth, development, and organ function. Its impact on bone development is known, but its effects on cartilage remain unclear. This study aimed to evaluate the femoral cartilage thickness in children with primary malnutrition. Methods: In this cross-sectional observational study, 83 children with primary malnutrition and 62 age- and sex-matched healthy controls were included. Patients with primary malnutrition were classified as mild, moderate and severe. Femoral cartilage thickness measurements of all children were taken by ultrasound from the femoral lateral condyle, femoral medial condyle and intercondylar area for both knees with the patient in a supine position with the knees flexed 90 degrees. Results: The right lateral, right medial, left lateral, and left medial femoral cartilages were significantly thicker in patients with malnutrition compared to those without malnutrition (p = 0.002, 0.004, <0.001, and 0.001, respectively). A significant negative correlation was found between age, weight Z-score, and height Z-score and triceps skinfold thickness. Conclusions: Distal femoral cartilage thickness is significantly greater in children with primary malnutrition. This demonstrates the effect of nutritional factors on cartilage tissue and suggests that children with chronic malnutrition are at risk for both knee joint problems and short stature later in life. Full article
(This article belongs to the Section Pediatric Gastroenterology and Nutrition)
Show Figures

Figure 1

16 pages, 4733 KiB  
Article
Vibratory Pile Driving in High Viscous Soil Layers: Numerical Analysis of Penetration Resistance and Prebored Hole of CEL Method
by Caihui Li, Changkai Qiu, Xuejin Liu, Junhao Wang and Xiaofei Jing
Buildings 2025, 15(15), 2729; https://doi.org/10.3390/buildings15152729 (registering DOI) - 2 Aug 2025
Abstract
High-viscosity stratified strata, characterized by complex geotechnical properties such as strong cohesion, low permeability, and pronounced layered structures, exhibit significant lateral friction resistance and high-end resistance during steel sheet pile installation. These factors substantially increase construction difficulty and may even cause structural damage. [...] Read more.
High-viscosity stratified strata, characterized by complex geotechnical properties such as strong cohesion, low permeability, and pronounced layered structures, exhibit significant lateral friction resistance and high-end resistance during steel sheet pile installation. These factors substantially increase construction difficulty and may even cause structural damage. This study addresses two critical mechanical challenges during vibratory pile driving in Fujian Province’s hydraulic engineering project: prolonged high-frequency driving durations, and severe U-shaped steel sheet pile head damage in high-viscosity stratified soils. Employing the Coupled Eulerian–Lagrangian (CEL) numerical method, a systematic investigation was conducted into the penetration resistance, stress distribution, and damage patterns during vibratory pile driving under varying conditions of cohesive soil layer thickness, predrilled hole spacing, and aperture dimensions. The correlation between pile stress and penetration depth was established, with the influence mechanisms of key factors on driving-induced damage in high-viscosity stratified strata under multi-factor coupling effects elucidated. Finally, the feasibility of predrilling techniques for resistance reduction was explored. This study applies the damage prediction model based on the CEL method to U-shaped sheet piles in high-viscosity stratified formations, solving the problem of mesh distortion in traditional finite element methods. The findings provide scientific guidance for steel sheet pile construction in high-viscosity stratified formations, offering significant implications for enhancing construction efficiency, ensuring operational safety, and reducing costs in such challenging geological conditions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 5449 KiB  
Article
Comparisons of the Effects of Polymer and Alcohol Varnishes on Norway Spruce Wood Surface Modifications
by Mariana Domnica Stanciu, Maria Cristina Timar, Mircea Mihalcica, Mihaela Cosnita and Florin Dinulică
Polymers 2025, 17(15), 2131; https://doi.org/10.3390/polym17152131 (registering DOI) - 1 Aug 2025
Abstract
Spruce wood is a natural polymeric material, consisting of cellulose, lignin, hemicelluloses and other secondary components, which gives it a unique chemical footprint and architecture. Varnishes are used in musical instruments to protect the wood against humidity variations, wood being a hygroscopic material, [...] Read more.
Spruce wood is a natural polymeric material, consisting of cellulose, lignin, hemicelluloses and other secondary components, which gives it a unique chemical footprint and architecture. Varnishes are used in musical instruments to protect the wood against humidity variations, wood being a hygroscopic material, but also to protect the wood from dirt. The varnishes used both to protect the wood from resonance and to ensure a special aesthetic appearance are either polymeric varnishes (nitrocellulose, oil-based) or volatile solvents (spirit). In this study, the color changes, the surface morphology and the chemical spectrum produced by three types of varnishes, applied in 5, 10 and 15 layers, on resonance spruce plates were analyzed. The results revealed significant changes in the color parameters: the lightness decreased by approximately 17% after the first layer, by 50% after 5 layers, by 65% after 10 layers and by 70% after 15 layers. The color parameters are most influenced by the anatomical quality of spruce wood (annual ring width and earlywood/latewood ratio) in the case of oil-based varnishes and least influenced in the case of nitrocellulose varnishes. The chemical fingerprint was determined by FTIR spectrum analysis, which revealed that the most pronounced absorptions were the double band 2926–2858 cm−1, corresponding to aliphatic methylene and methyl groups (asymmetric and symmetrical C-H stretch), and the bands at 1724 cm−1 (oil-based varnish), 1722 cm−1 (nitrocellulose varnish) and 1708 cm−1 (spirit varnish), all assigned to non-conjugated carbonyl groups in either carboxylic acids, esters aldehydes or ketones. The novelty of the study lies in the comparative analysis of three types of varnishes used in the musical instrument industry, applied to samples of spruce resonance wood with different macroscopic characteristics in three different layer thicknesses. Full article
(This article belongs to the Special Issue Advances in Wood Based Composites, 2nd Edition)
Show Figures

Figure 1

23 pages, 3817 KiB  
Article
Experimental and Numerical Study on the Restitution Coefficient and the Corresponding Elastic Collision Recovery Mechanism of Rapeseed
by Chuandong Liu, Haoping Zhang, Zebao Li, Zhiheng Zeng, Xuefeng Zhang, Lian Gong and Bin Li
Agronomy 2025, 15(8), 1872; https://doi.org/10.3390/agronomy15081872 (registering DOI) - 1 Aug 2025
Abstract
In this study, we aimed to address the lack of systematic research on key collision dynamics parameters (elastic restitution coefficient) in the full mechanization of rapeseed operations, which hinders the development of precision agriculture. In this present work, the restitution coefficient of rapeseed [...] Read more.
In this study, we aimed to address the lack of systematic research on key collision dynamics parameters (elastic restitution coefficient) in the full mechanization of rapeseed operations, which hinders the development of precision agriculture. In this present work, the restitution coefficient of rapeseed was systematically investigated, and a predictive model (R2 = 0.959) was also established by using Box–Behnken design response surface methodology (BBD-RSM). The results show that the collision restitution coefficient varies in the range of 0.539–0.649, with the key influencing factors ranked as follows: moisture content (Mc) > material layer thickness (L) > drop height (H). The EDEM simulation methodology was adopted to validate the experimental results, and the results show that there is a minimal relative error (−1% < δ < 1%) between the measured and simulated rebound heights, indicating that the established model shows a reliable prediction performance. Moreover, by comprehensively analyzing stress, strain, and energy during the collision process between rapeseed and Q235 steel, it can be concluded that the process can be divided into five stages—free fall, collision compression, collision recovery, rebound oscillation, and rebound stabilization. The maximum stress (1.19 × 10−2 MPa) and strain (6.43 × 10−6 mm) were observed at the beginning of the collision recovery stage, which can provide some theoretical and practical basis for optimizing and designing rapeseed machines, thus achieving the goals of precise control, harvest loss reduction, and increased yields. Full article
(This article belongs to the Section Precision and Digital Agriculture)
25 pages, 7708 KiB  
Review
A Review of Heat Transfer and Numerical Modeling for Scrap Melting in Steelmaking Converters
by Mohammed B. A. Hassan, Florian Charruault, Bapin Rout, Frank N. H. Schrama, Johannes A. M. Kuipers and Yongxiang Yang
Metals 2025, 15(8), 866; https://doi.org/10.3390/met15080866 (registering DOI) - 1 Aug 2025
Abstract
Steel is an important product in many engineering sectors; however, steelmaking remains one of the largest CO2 emitters. Therefore, new governmental policies drive the steelmaking industry toward a cleaner and more sustainable operation such as the gas-based direct reduction–electric arc furnace process. [...] Read more.
Steel is an important product in many engineering sectors; however, steelmaking remains one of the largest CO2 emitters. Therefore, new governmental policies drive the steelmaking industry toward a cleaner and more sustainable operation such as the gas-based direct reduction–electric arc furnace process. To become carbon neutral, utilizing more scrap is one of the feasible solutions to achieve this goal. Addressing knowledge gaps regarding scrap heterogeneity (size, shape, and composition) is essential to evaluate the effects of increased scrap ratios in basic oxygen furnace (BOF) operations. This review systematically examines heat and mass transfer correlations relevant to scrap melting in BOF steelmaking, with a focus on low Prandtl number fluids (thick thermal boundary layer) and dense particulate systems. Notably, a majority of these correlations are designed for fluids with high Prandtl numbers. Even for the ones tailored for low Prandtl, they lack the introduction of the porosity effect which alters the melting behavior in such high temperature systems. The review is divided into two parts. First, it surveys heat transfer correlations for single elements (rods, spheres, and prisms) under natural and forced convection, emphasizing their role in predicting melting rates and estimating maximum shell size. Second, it introduces three numerical modeling approaches, highlighting that the computational fluid dynamics–discrete element method (CFD–DEM) offers flexibility in modeling diverse scrap geometries and contact interactions while being computationally less demanding than particle-resolved direct numerical simulation (PR-DNS). Nevertheless, the review identifies a critical gap: no current CFD–DEM framework simultaneously captures shell formation (particle growth) and non-isotropic scrap melting (particle shrinkage), underscoring the need for improved multiphase models to enhance BOF operation. Full article
Show Figures

Graphical abstract

32 pages, 2962 KiB  
Article
Optimizing Passive Thermal Enhancement via Embedded Fins: A Multi-Parametric Study of Natural Convection in Square Cavities
by Saleh A. Bawazeer
Energies 2025, 18(15), 4098; https://doi.org/10.3390/en18154098 (registering DOI) - 1 Aug 2025
Abstract
Internal fins are commonly utilized as a passive technique to enhance natural convection, but their efficiency depends on complex interplay between fin design, material properties, and convective strength. This study presents an extensive numerical analysis of buoyancy-driven flow in square cavities containing a [...] Read more.
Internal fins are commonly utilized as a passive technique to enhance natural convection, but their efficiency depends on complex interplay between fin design, material properties, and convective strength. This study presents an extensive numerical analysis of buoyancy-driven flow in square cavities containing a single horizontal fin on the hot wall. Over 9000 simulations were conducted, methodically varying the Rayleigh number (Ra = 10 to 105), Prandtl number (Pr = 0.1 to 10), and fin characteristics, such as length, vertical position, thickness, and the thermal conductivity ratio (up to 1000), to assess their overall impact on thermal efficiency. Thermal enhancements compared to scenarios without fins are quantified using local and average Nusselt numbers, as well as a Nusselt number ratio (NNR). The results reveal that, contrary to conventional beliefs, long fins positioned centrally can actually decrease heat transfer by up to 11.8% at high Ra and Pr due to the disruption of thermal plumes and diminished circulation. Conversely, shorter fins located near the cavity’s top and bottom wall edges can enhance the Nusselt numbers for the hot wall by up to 8.4%, thereby positively affecting the development of thermal boundary layers. A U-shaped Nusselt number distribution related to fin placement appears at Ra ≥ 103, where edge-aligned fins consistently outperform those positioned mid-height. The benefits of high-conductivity fins become increasingly nonlinear at larger Ra, with advantages limited to designs that minimally disrupt core convective patterns. These findings challenge established notions regarding passive thermal enhancement and provide a predictive thermogeometric framework for designing enclosures. The results can be directly applied to passive cooling systems in electronics, battery packs, solar thermal collectors, and energy-efficient buildings, where optimizing heat transfer is vital without employing active control methods. Full article
13 pages, 2273 KiB  
Article
Impact of Shades and Thickness on the Polymerization of Low-Viscosity Bulk-Fill Composites in Pediatric Restorations: An In Vitro Study
by Gennaro Musella, Stefania Cantore, Maria Eleonora Bizzoca, Mario Dioguardi, Rossella Intini, Lorenzo Lo Muzio, Federico Moramarco, Francesco Pettini and Andrea Ballini
Dent. J. 2025, 13(8), 352; https://doi.org/10.3390/dj13080352 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: This study aimed to investigate the influence of shade and thickness on the polymerization of SDR® flow+, a low-viscosity bulk-fill composite, by assessing its degree of conversion (DC). Methods: An in vitro study was conducted using SDR® flow+ composite resin. [...] Read more.
Background/Objectives: This study aimed to investigate the influence of shade and thickness on the polymerization of SDR® flow+, a low-viscosity bulk-fill composite, by assessing its degree of conversion (DC). Methods: An in vitro study was conducted using SDR® flow+ composite resin. Specimens were prepared at two thicknesses (2 mm and 4 mm) and four shades (Universal, A1, A2, A3). Polymerization was performed using a high-intensity LED curing unit. The DC was assessed using Fourier-transform infrared spectroscopy (ATR-FTIR). Results: Both shade and thickness significantly influenced DC. Thicker specimens (4 mm) exhibited reduced polymerization compared to thinner specimens (2 mm). Darker shades, particularly A3, demonstrated the lowest DC values due to their higher chroma, which limits light penetration. In contrast, the Universal shade achieved higher DC values, even at increased depths, likely due to its greater translucency. Conclusions: Shade and thickness play a critical role in the polymerization of bulk-fill composites. Ensuring adequate polymerization is essential for the longevity of pediatric restorations. Further in vivo research is needed to confirm these findings and assess their clinical implications. Full article
(This article belongs to the Special Issue Women's Research in Dentistry)
Show Figures

Figure 1

15 pages, 580 KiB  
Article
Reliability and Inter-Device Agreement Between a Portable Handheld Ultrasound Scanner and a Conventional Ultrasound System for Assessing the Thickness of the Rectus Femoris and Vastus Intermedius
by Carlante Emerson, Hyun K. Kim, Brian A. Irving and Efthymios Papadopoulos
J. Funct. Morphol. Kinesiol. 2025, 10(3), 299; https://doi.org/10.3390/jfmk10030299 (registering DOI) - 1 Aug 2025
Abstract
Background: Ultrasound (U/S) can be used to evaluate skeletal muscle characteristics in clinical and sports settings. Handheld U/S devices have recently emerged as a cheaper and portable alternative to conventional U/S systems. However, further research is warranted on their reliability. We assessed the [...] Read more.
Background: Ultrasound (U/S) can be used to evaluate skeletal muscle characteristics in clinical and sports settings. Handheld U/S devices have recently emerged as a cheaper and portable alternative to conventional U/S systems. However, further research is warranted on their reliability. We assessed the reliability and inter-device agreement between a handheld U/S device (Clarius L15 HD3) and a more conventional U/S system (GE LOGIQ e) for measuring the thickness of the rectus femoris (RF) and vastus intermedius (VI). Methods: Cross-sectional images of the RF and VI muscles were obtained in 20 participants by two assessors, and on two separate occasions by one of those assessors, using the Clarius L15 HD3 and GE LOGIQ e devices. RF and VI thickness measurements were obtained to determine the intra-rater reliability, inter-rater reliability, and inter-device agreement. Results: All intraclass correlation coefficients (ICCs) were above 0.9 for intra-rater reliability (range: 0.94 to 0.97), inter-rater reliability (ICC: 0.97), and inter-device agreement (ICC: 0.98) when comparing the two devices in assessing RF and VI thickness. For the RF, the Bland–Altman plot revealed a mean difference of 0.06 ± 0.07 cm, with limits of agreement ranging from 0.21 to −0.09, whereas for the VI, the Bland–Altman plot showed a mean difference of 0.07 ± 0.10 cm, with limits of agreement ranging from 0.27 to −0.13. Conclusions: The handheld Clarius L15 HD3 was reliable and demonstrated high agreement with the more conventional GE LOGIQ e for assessing the thickness of the RF and VI in young, healthy adults. Full article
(This article belongs to the Section Kinesiology and Biomechanics)
20 pages, 7211 KiB  
Article
Experimental and Numerical Analysis of Corrosion-Induced Cracking in Reinforced Concrete
by Olfa Loukil, Lucas Adelaide, Veronique Bouteiller and Marc Quiertant
Appl. Mech. 2025, 6(3), 57; https://doi.org/10.3390/applmech6030057 (registering DOI) - 1 Aug 2025
Abstract
The aim of this paper is to present the results of an experimental and numerical investigation into the degradation of reinforced concrete (RC) specimens subjected to an accelerated corrosion process using impressed current in the presence of chloride ions. The corrosion of the [...] Read more.
The aim of this paper is to present the results of an experimental and numerical investigation into the degradation of reinforced concrete (RC) specimens subjected to an accelerated corrosion process using impressed current in the presence of chloride ions. The corrosion of the rebars was carried out using three current densities (50, 100, and 200 µA/cm2) and various exposure times. The experimental results characterised the internal degradation of the RC specimens through measurement of the corrosion product thicknesses at the steel–concrete interface; the widths, lengths and orientations of internal concrete cracks; and the external concrete crack widths. In addition, numerical modelling of the corroded RC specimens was conducted to describe the crack patterns. The comparison between the experimental and numerical results demonstrated a high degree of correlation, providing insights into the degradation process of RC specimens due to corrosion. Full article
Show Figures

Figure 1

18 pages, 695 KiB  
Review
Macromycete Edible Fungi as a Functional Poultry Feed Additive: Influence on Health, Welfare, Eggs, and Meat Quality—Review
by Damian Duda, Klaudia Jaszcza and Emilia Bernaś
Molecules 2025, 30(15), 3241; https://doi.org/10.3390/molecules30153241 (registering DOI) - 1 Aug 2025
Abstract
Over the years, macromycete fungi have been used as a source of food, part of religious rites and rituals, and as a medicinal remedy. Species with strong health-promoting potential include Hericium erinaceus, Cordyceps militaris, Ganoderma lucidum, Pleurotus ostreatus, Flammulina [...] Read more.
Over the years, macromycete fungi have been used as a source of food, part of religious rites and rituals, and as a medicinal remedy. Species with strong health-promoting potential include Hericium erinaceus, Cordyceps militaris, Ganoderma lucidum, Pleurotus ostreatus, Flammulina velutipes, and Inonotus obliquus. These species contain many bioactive compounds, including β-glucans, endo- and exogenous amino acids, polyphenols, terpenoids, sterols, B vitamins, minerals, and lovastatin. The level of some biologically active substances is species-specific, e.g., hericenones and erinacines, which have neuroprotective properties, and supporting the production of nerve growth factor in the brain for Hericium erinaceus. Due to their high health-promoting potential, mushrooms and substances isolated from them have found applications in livestock nutrition, improving their welfare and productivity. This phenomenon may be of particular importance in the nutrition of laying hens and broiler chickens, where an increase in pathogen resistance to antibiotics has been observed in recent years. Gallus gallus domesticus is a key farm animal for meat and egg production, so the search for new compounds to support bird health is important for food safety. Studies conducted to date indicate that feed supplementation with mushrooms has a beneficial effect on, among other things, bird weight gain; bone mineralisation; and meat and egg quality, including the lipid profile and protein content and shell thickness, and promotes the development of beneficial microbiota, thereby increasing immunity. Full article
16 pages, 2578 KiB  
Article
Experimental Comparison Between Two-Course Masonry Specimens and Three-Course Extracted Masonry Specimens in Clay Masonry Structures
by Bernardo Tutikian and Felipe Schneider
Processes 2025, 13(8), 2446; https://doi.org/10.3390/pr13082446 (registering DOI) - 1 Aug 2025
Abstract
This study investigates the relationship between the compressive strength of two-course masonry specimens and three-course masonry specimens extracted from previously constructed walls, to correlate the execution control specimens with the retest specimens. Compressive strength tests were performed on clay masonry units, laboratory-built two-course [...] Read more.
This study investigates the relationship between the compressive strength of two-course masonry specimens and three-course masonry specimens extracted from previously constructed walls, to correlate the execution control specimens with the retest specimens. Compressive strength tests were performed on clay masonry units, laboratory-built two-course masonry specimens, and three-course masonry specimens extracted from constructed walls, following the prescriptions of NBR 15270 and NBR 16868-3. The results demonstrate that three-course masonry specimens exhibit lower compressive strength (characteristic and average, 44.83% and 40.29%, respectively) compared to two-course masonry specimens. Additionally, it was found that the dispersion of results is greater in three-course masonry specimens. Given that three-course specimens are typically used when it becomes necessary to verify the structural compliance of executed masonry—usually following unsatisfactory results from execution control using two-course specimens—more data are needed to compare such results. Factors such as increased height-to-thickness ratio, the presence of head joints, and the influence of execution conditions at the construction site seem to influence the difference between two and three-course specimens, as well as the dispersion of the results. Therefore, it is essential that technical standards provide supporting criteria to enable a reliable comparison between two-course specimens used for execution control and three-course specimens used as retest elements. Full article
(This article belongs to the Special Issue Composite Materials Processing, Modeling and Simulation)
Show Figures

Figure 1

13 pages, 1189 KiB  
Article
The Role of Biodegradable Temporizing Matrix in Paediatric Reconstructive Surgery
by Aikaterini Bini, Michael Ndukwe, Christina Lipede, Ramesh Vidyadharan, Yvonne Wilson and Andrea Jester
J. Clin. Med. 2025, 14(15), 5427; https://doi.org/10.3390/jcm14155427 (registering DOI) - 1 Aug 2025
Abstract
Introduction: Biodegradable Temporizing Matrix (BTM) is a new synthetic dermal substitute suitable for wound closure and tissue regeneration. The data in paediatric population remain limited. The study purpose is to review the indications for BTM application in paediatric patients; evaluate the short-term and [...] Read more.
Introduction: Biodegradable Temporizing Matrix (BTM) is a new synthetic dermal substitute suitable for wound closure and tissue regeneration. The data in paediatric population remain limited. The study purpose is to review the indications for BTM application in paediatric patients; evaluate the short-term and long-term results, including complications and functional outcomes, as well as to share some unique observations regarding the use of BTM in paediatric population. Patients and Methods: Patients undergoing reconstructive surgery and BTM application during the last three years were included. Data collected included patient demographics, primary diagnosis, previous surgical management, post-operative complications and final outcomes. BTM was used in 32 patients. The indications varied including epidermolysis bullosa (n = 6), burns (n = 4), trauma (n = 7), infection (n = 4), ischemia or necrosis (n = 11). Results: The results were satisfying with acceptable aesthetic and functional outcomes. Complications included haematomaunderneath the BTM leading to BTM removal and re-application (n = 1), BTM infection (n = 1) and split-thickness skin graft failure on top of BTM requiring re-grafting (n = 2). Conclusions: BTM can be a good alternative to large skin grafts, locoregional flaps or even free flaps. The big advantages over other dermal substitutes or skin grafts are that BTM is less prone to infection and offers excellent scarring by preserving the normal skin architecture. Specifically in children, BTM might not require grafting, resulting in spontaneous healing with good scarring. In critically ill patients, BTM reduces the operation time and there is no donor site morbidity. BTM should be considered in the reconstructive ladder when discussing defect coverage options in children and young people. Full article
(This article belongs to the Special Issue Trends in Plastic and Reconstructive Surgery)
Show Figures

Figure 1

Back to TopTop