An Experimental and Simulation Study on the Effect of Adhesive in Weld Bonded Spot Weld Joints
Abstract
1. Introduction
Recent Research on Weld Bond (WB)
2. Materials and Methods
2.1. Materials for Experimentation
2.2. Machines and Instrumentations
2.3. Welding Schedule and Joint Preparation
2.4. Finite Element Analysis (FEA) Models for Stress Analysis
3. Results and Discussion
3.1. Nugget Diameters and Shear Strengths of Spot Welded and Weld-Bonded Joints
3.2. Energy Absorption Before Failure of Spot-Welded and Weld-Bonded Joints
3.3. Fracture Modes of Spot-Welded and Weld-Bonded Joints
3.4. Stress Analysis on Spot-Welded and Weld-Bonded Joints
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Taub, A.; Moor, E.D.; Luo, A.; Matlock, D.K.; Speer, J.G.; Vaidya, U. Materials for Automotive Lightweighting. Annu. Rev. Mater. Res. 2019, 49, 327–359. [Google Scholar] [CrossRef]
- Andersson, O.; Semere, D.; Melander, A.; Arvidsson, M.; Lindberg, B. Digitalization of Process Planning of Spot Welding in Body-in-white. Procedia CIRP 2016, 50, 618–623. [Google Scholar] [CrossRef]
- Soomro, I.A.; Pedapati, S.R.; Awang, M. A review of advances in resistance spot welding of automotive sheet steels: Emerging methods to improve joint mechanical performance. Int. J. Adv. Manuf. Technol. 2021, 118, 1335–1366. [Google Scholar] [CrossRef]
- ANSI/AWS D8.1M: 2021; Specification for Automotive Weld Quality Resistance Spot Welding of Steel. 3rd ed. American Welding Society: Miami, FL, USA, 2021.
- Chen, N.; Wang, H.P.; Wang, M.; Carlson, B.E.; Sigler, D.R. Schedule and electrode design for resistance spot weld bonding Al to steels. J. Mater. Process. Technol. 2019, 265, 158–172. [Google Scholar] [CrossRef]
- Das, T.; Paul, J. Interlayers in Resistance Spot-Welded Lap Joints: A Critical Review. Metallogr. Microstruct. Anal. 2021, 10, 3–24. [Google Scholar] [CrossRef]
- Ren, S.; Ma, Y.; Saeki, S.; Iwamoto, Y.; Chen, Y.; Ma, N. Fracture mechanism and strength evaluation of Al5052/CFRP joint produced by coaxial one-side resistance spot welding. Compos. Struct. 2020, 252, 112766. [Google Scholar] [CrossRef]
- Xu, H.; Fang, X. Resistance insert spot welding: A new joining method for thermoplastic FRP–steel component. Weld. World 2023, 67, 1733–1752. [Google Scholar] [CrossRef]
- Lara, B.; Giorjao, R.; Ramirez, A. Resistance spot welding of printed interlayers to join Al-Fe sheets. Sci. Technol. Weld. Join. 2023, 28, 18–26. [Google Scholar] [CrossRef]
- Ren, S.; Ma, Y.; Ma, N. Development of FEA-ANN-Integrated Approach for Process Optimization of Coaxial One-Side Resistance Spot Welding of Al5052 and CFRP. J. Manuf. Sci. Eng. 2022, 144, 011004. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, K.; Yang, Y.; Sun, X.; Yu, S.; Li, Y.; Yu, Y.; Sun, D. A novel dissimilar resistance spot welding of Ti6Al4V alloy and 316L stainless steel via copper as interlayer by using optimal electrodes. J. Mater. Res. Technol. 2024, 33, 5425–5437. [Google Scholar] [CrossRef]
- Dharaiya, V.; Panchal, A.; Acharya, G.D. Investigating feasibility of interlayers in Resistance Spot Welding of low-carbon steel sheets. SN Appl. Sci. 2021, 3, 749. [Google Scholar] [CrossRef]
- Karim, M.; Park, Y.D. A Review on Welding of Dissimilar Metals in Car Body Manufacturing. J. Weld. Join. 2020, 38, 8–23. [Google Scholar] [CrossRef]
- Varga, J.; Brezinová, J.; Brezina, J. Quality Analysis of Bonded Joints in the Renovation of Plastic Automotive Parts. Appl. Sci. 2024, 14, 2–3. [Google Scholar] [CrossRef]
- Goushegir, S.M.; Santos, J.F.D.; Amancio-Filho, S.T. Friction Spot Joining of aluminum AA2024/carbon-fiber reinforced poly(phenylene sulfide) composite single lap joints: Microstructure and mechanical performance. Mater. Des. 2014, 54, 196–206. [Google Scholar] [CrossRef]
- Jeevi, G.; Nayak, S.K.; Kader, M.A. Review on adhesive joints and their application in hybrid composite structures. J. Adhes. Sci. Technol. 2019, 33, 1497–1520. [Google Scholar] [CrossRef]
- Maggiore, S.; Banea, M.D.; Stagnaro, P.; Luciano, G. A Review of Structural Adhesive Joints in Hybrid Joining Processes. Polymers 2021, 13, 3961. [Google Scholar] [CrossRef] [PubMed]
- Lambiase, F.; Scipioni, S.I.; Lee, C.J.; Ko, D.C.; Liu, F. A State-of-the-Art Review on Advanced Joining Processes for Metal-Composite and Metal-Polymer Hybrid Structures. Materials 2021, 14, 1890. [Google Scholar] [CrossRef]
- Antelo, J.; Akhavan-Safar, A.; Carbas, R.J.C.; Marques, E.A.S.; Goyal, R.; da Silva, L.F.M. Replacing welding with adhesive bonding: An industrial case study. Int. J. Adhes. Adhes. 2022, 113, 103064. [Google Scholar] [CrossRef]
- Ufferman, B.; Abke, T.; Barker, M.; Vivek, A.; Daehn, G.S. Mechanical properties of joints in 5052 aluminum made with adhesive bonding and mechanical fasteners. Int. J. Adhes. Adhes. 2018, 83, 96–102. [Google Scholar] [CrossRef]
- Braga, D.F.O.; Maciel, R.; Bergmann, L.; da Silva, L.F.M.; Infante, V.; Santos, J.F.D.; Moreira, P.M.G.P. Fatigue performance of hybrid overlap friction stir welding and adhesive bonding of an Al-Mg-Cu alloy. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 1262–1270. [Google Scholar] [CrossRef]
- Manladan, S.M.; Yusof, F.; Ramesh, S.; Fadzil, M.; Luo, Z.; Ao, S. A review on resistance spot welding of aluminum alloys. Int. J. Adv. Manuf. Technol. 2017, 90, 605–634. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Lai, X. Effect of epoxy adhesive on nugget formation in resistance welding of SAE1004/DP600/DP780 steel sheets. Materials 2018, 11, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Cavezza, F.; Boehm, M.; Terryn, H.; Hauffman, T. A Review of Adhesively Bonded Aluminium Joints in the Automotive Industry. Metals 2020, 10, 730. [Google Scholar] [CrossRef]
- Burchardt, B. Automotive Industry. In Handbook of Adhesion Technology; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1186–1212. [Google Scholar] [CrossRef]
- Hayat, F. Comparing Properties of Adhesive Bonding, Resistance Spot Welding, and Adhesive Weld Bonding of Coated and Uncoated DP 600 Steel. J. Iron Steel Res. Int. 2011, 18, 70–78. [Google Scholar] [CrossRef]
- Xu, W.; Chen, D.L.; Liu, L.; Mori, H.; Zhou, Y. Microstructure and mechanical properties of weld-bonded and resistance spot welded magnesium-to-steel dissimilar joints. Mater. Sci. Eng. A 2012, 537, 11–24. [Google Scholar] [CrossRef]
- Bartczak, B.; Mucha, J.; Trzepieciński, T. Stress distribution in adhesively-bonded joints and the loading capacity of hybrid joints of car body steels for the automotive industry. Int. J. Adhes. Adhes. 2013, 45, 42–52. [Google Scholar] [CrossRef]
- Pereira, A.M.; Ferreira, J.A.M.; Antunes, F.V.; Bartolo, P.J. Assessment of the fatigue life of aluminium spot-welded and weld-bonded joints. J. Adhes. Sci. Technol. 2014, 28, 1432–1450. [Google Scholar] [CrossRef]
- Sadowski, T.; Golewski, P.; Kneć, M. Experimental investigation and numerical modelling of spot welding–adhesive joints response. Compos. Struct. 2014, 112, 66–77. [Google Scholar] [CrossRef]
- Costa, H.R.M.; Reis, J.M.L.; Souza, J.P.B.; Pacheco, P.M.C.L.; Aguiar, R.A.A.; Barros, S.D. Experimental investigation of the mechanical behaviour of spot welding–adhesives joints. Compos. Struct. 2015, 133, 847–852. [Google Scholar] [CrossRef]
- Marques, G.P.; Campilho, R.D.S.G.; da Silva, F.J.G.; Moreira, R.D.F. Adhesive selection for hybrid spot-welded/bonded single-lap joints: Experimentation and numerical analysis. Compos. Part B 2016, 84, 248–257. [Google Scholar] [CrossRef]
- Piwowarczyk, T.; Korzeniowski, M. Quality analysis of hybrid adhesive-spot welded joints. J. Adhes. Sci. Technol. 2018, 32, 656–672. [Google Scholar] [CrossRef]
- Manladan, S.M.; Hamza, M.F.; Ramesh, S.; Luo, Z. Lap-Shear Performance of Weld-Bonded Mg Alloy and Austenitic Stainless Steel in Three-Sheet Stack-Up. Chin. J. Mech. Eng. 2024, 37, 70. [Google Scholar] [CrossRef]
- Kishore, K.; Kumar, P.; Mukhopadhyay, G. Resistance spot weldability of galvannealed and bare DP600 steel. J. Mater. Process. Technol. 2019, 271, 237–248. [Google Scholar] [CrossRef]
- ANSI/AWS/SAE/D8.9-97; Recommended Practice for Test Methods for Evaluating the Resistance Spot Welding Behavior of Automotive Sheet Steel Materials. American Weldimg Society: Miami, FL, USA, 1997.
- Product Data Sheet-Sikaflex®-252, Version 03.01 (04-2023); Elastic Adhesive for Vehicle Assembly Bonding. Sika Industry: Baar, Switzerland, 2023. Available online: https://industry.sika.com/dam/dms/gb01/2/sikaflex_-252.pdf (accessed on 12 February 2025).
- ISO 18278-1; Resistance Welding—Weldability, Part 1—General Requirements for the Evaluation of Welability for Resistance Spot Seam and Projection Welding of Metallic Materials. International Standards Institute: Geneva, Switzerland, 2022.
- Pandya, K.S.; Grolleau, V.; Roth, C.C.; Mohr, D. Fracture response of resistance spot welded dual phase steel sheets: Experiments and modeling. Int. J. Mech. Sci. 2020, 187, 105869. [Google Scholar] [CrossRef]
- Zhao, L.; Lu, Y.; Xiong, Z.; Sun, L.; Qi, J.; Yuan, X.; Peng, J. Mechanical properties and nugget evolution in resistance spot welding of Zn–Al–Mg galvanized DC51D steel. High Temp. Mater. Process. 2023, 42, 20220243. [Google Scholar] [CrossRef]
- Janardhan, G.; Mukhopadhyay, G.; Dutta, K. Failure mechanism of resistance spot-welded DP600 steel under high cycle fatigue. Mater. Today Proc. 2022, 59, 1666–1671. [Google Scholar] [CrossRef]
- Nguyen, K.; Montans, F.J. Plane stress constrained multiplicative hyperelasto-plasticity with nonlinear kinematic hardening. Consistent theory based on elastic corrector rates and algorithmic implementation. Int. J. Plast. 2019, 128, 102592. [Google Scholar] [CrossRef]
- Cruz, D.J.; Pereira, A.F.G.; Simoes, V.M.; Amaral, R.L.; Santos, A.D.; Oliveira, M.C. Work Hardening of Metallic Sheets Under Tension-Compression and Simple Shear Reverse Loading. Key Eng. Mater. 2022, 926, 2012–2021. [Google Scholar] [CrossRef]
- Karpiesiuk, J. Young’s Modulus and Poisson’s Ratio of Polyurethene Adhesive in Lightweight Floor System. Mod. Approaches Mater. Sci. 2020, 2, 1–5. [Google Scholar] [CrossRef]
- Bhat, S.D.; Vijeesh, V.; Acharya, P.; Rao, M. Investigation of thin sheet stainless steel resistance spot welds: Effect of weld current on nugget failure and microstructure. Mater. Today Proc. 2021, 35, 361–365. [Google Scholar] [CrossRef]
- Jain, V.K.S.; Sarma, V.S.; Amirthalingam, M. Resistance spot welding behaviour of novel medium manganese (M-Mn) steels—Role of welding parameters on weld microstructure and mechanical properties. J. Manuf. Process. 2023, 101, 1405–1418. [Google Scholar] [CrossRef]
- Morales-Sánchez, G.; Collazo, A.; Doval-Gandoy, J. Influence of the process parameters on the quality and efficiency of the resistance spot welding process of advanced high-strength complex-phase steels. Metals 2021, 11, 1545. [Google Scholar] [CrossRef]
- Espinel-Hernández, A.; Sanchez-Orozco, M.; Sanchez-Roca, A.; Caputi, L.S.; Oliveira-Villarinho, L.; Carvajal-Fals, H. Influence of zinc coating on nugget development and mechanical properties in dissimilar welded joints DP600—AISI304 obtained by the RSW process. Dyna 2022, 89, 121–129. [Google Scholar] [CrossRef]
- Pouranvari, M.; Ranjbarnodeh, E. Resistance Spot Welding Characteristic of Ferrite-Martensite DP600 Dual Phase Advanced High Strength Steel-Part III: Mechanical Properties. World Appl. Sci. J. 2011, 15, 1521–1526. [Google Scholar]
- Soomoro, I.A.; Pedapati, S.R. Application of in situ post weld heat treatment using double pulse technology and its effect on microstructure and mechanical performance of resistance spot welded HSLA350 steel. Int. J. Adv. Manuf. Technol. 2019, 105, 3249–3260. [Google Scholar] [CrossRef]
- Hernández, A.E.; Villarinho, L.O.; Ferraresi, V.A.; Orozco, M.S.; Roca, A.S.; Fals, H.C. Optimization of resistance spot welding process parameters of dissimilar DP600/AISI304 joints using the infrared thermal image processing. Int. J. Adv. Manuf. Technol. 2020, 108, 211–221. [Google Scholar] [CrossRef]
- Hernandez, A.E.; Roca, A.S.; Fals, H.C.; Ferraresi, V.A.; Vilarinho, L.O. Influence of polarity on mechanical properties of dissimilar resistance spot welds of DP 600/AISI 304 steels. Sci. Technol. Weld. Join. 2016, 21, 607–613. [Google Scholar] [CrossRef]
- Stavropoulos, P.; Sabatakakis, K. Quality Assurance in Resistance Spot Welding: State of Practice, State of the Art, and Prospects. Metals 2024, 14, 185. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Q.; Wang, S.; Han, X.; Li, Y.; David, S.A. Effect of adhesive sealant on resistance spot welding of 301L stainless steel. J. Manuf. Process. 2020, 51, 62–72. [Google Scholar] [CrossRef]
- Valaee-Tale, M.; Sheikhi, M.; Mazaheri, Y.; Ghaini, F.M.; Usefifar, G.R. Criterion for predicting expulsion in resistance spot welding of steel sheets. J. Mater. Process. Technol. 2020, 275, 116329. [Google Scholar] [CrossRef]
- Arumugam, A.; Baharuddin, A. Effect of Force Control during Spot Welding on Weld Properties. Int. J. Sci. Res. Publ. 2014, 4, 1–6. [Google Scholar]
- Tamizi, M.; Pouranvari, M.; Movahedi, M. The Role of HAZ Softening on Cross-Tension Mechanical Performance of Martensitic Advanced High Strength Steel Resistance Spot Welds. Metall. Mater. Trans. A 2021, 52, 655–667. [Google Scholar] [CrossRef]
- Arumugam, A.; Pramanik, A. A study of spot weld pull-out failure (PF) mechanism under different loading conditions for stainless steel and mild steel joints. Aust. J. Mech. Eng. 2020, 20, 603–616. [Google Scholar] [CrossRef]
- Sivaraj, P.; Seeman, M.; Kanagarajan, D.; Seetharaman, R. Influence of welding parameter on mechanical properties and microstructural features of resistance spot welded dual phase steel sheets joint. Mater. Today: Proc. 2020, 22, 558–562. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Sun, H.T.; Chen, G.L.; Lai, X.M. Comparison of mechanical properties and microstructure of weld nugget between weld-bonded and spot-welded dual-phase steel. Proc. Inst. Mech. Engineers. Part B J. Eng. Manuf. 2009, 223, 1341–1350. [Google Scholar] [CrossRef]
- Dorribo, D.; Greve, L.; Diez, P.; Arias, I.; Larrayoz-Izcara, X. Numerical estimation of the bearing capacity of resistance spot welds in martensitic boron steels using a J-integral fracture criterion. Theor. Appl. Fract. Mech. 2018, 96, 497–508. [Google Scholar] [CrossRef]
- MKhan, F.; Sharma, G.; Dwivedi, D.K. Weld-bonding of 6061 aluminium alloy. Int. J. Adv. Manuf. Technol. 2015, 78, 863–873. [Google Scholar] [CrossRef]
Steel | - | C | Mn | Cr | Mo | Al | Si | P | S | Ni | N | Cu |
---|---|---|---|---|---|---|---|---|---|---|---|---|
DP600 | - | 0.078 | 1.64 | 0.44 | 0.13 | 0.047 | 0.26 | 0.01 | 0.006 | 0.03 | 0.007 | 0.05 |
Stainless | Min | - | - | 16.0 | 2.0 | - | - | - | - | 10.0 | - | - |
Max | 0.08 | 2.0 | 18.0 | 3.0 | - | 0.75 | 0.045 | 0.03 | 14.0 | 0.1 | - |
DP600 | 316SS | Sikaflex®-252 Adhesive | |
---|---|---|---|
Yield strength (MPa) | 370 | 205 | - |
Maximum tensile strength (MPa) | 630 | 515 | 3 |
Elongation (%) | 24 | 40 | 400 |
Electrical resistance (µΩ.m) @20 °C | 0.284 | 0.74 | - |
Thermal conductivity W (m °C)−1 @20–100 °C | 57 | 14.6 | - |
Joint | Welding Current (kA) | Weld Time (s) and Electrode Force (kN) |
---|---|---|
RSW DP600 + DP600 | 10 | 0.8 s and 2.8 kN |
8.5 | ||
7 | ||
RSW DP600 + 316SS | 10 | |
9 | ||
8 | ||
7 | ||
WB DP600 + DP600 | 10 | |
8.5 | ||
7 | ||
WB DP600 + 316SS | 10 | |
9 | ||
8 | ||
7 |
Material Properties | DP600 Base | DP600 HAZ | DP600 Weld | Sikaflex Adhesive |
---|---|---|---|---|
Hardness (Hv) [41] | 220 | 384 | 420 | - |
Young’s Modulus (GPa) | 210 | 364.8 | 399 | 2.2 [44] |
Poisson’s Ratio | 0.28 | 0.28 | 0.28 | 0.4 [44] |
Shear Modulus (GPa) | 82 | 142.5 | 155.8 | 0.78 |
Density (kg/m3) | 7700 | - | - | 1200 [37] |
Joint Type | Min Diameter (mm) at 7 kA | Max Diameter (mm) at 10 kA |
---|---|---|
RSW DP600 + DP600 | 2.23 | 4.89 |
WB DP600 + DP600 | 1.89 | 5.39 |
RSW DP600 + 316SS | 2.08 | 4.08 |
WB DP600 + 316SS | No weld | 4.84 |
Welding Current | |||||
---|---|---|---|---|---|
Joint Type | 7 kA | 8 kA | 8.5 kA | 9 kA | 10 kA |
RSW DP600 + DP600 | IF | - | IF | - | PIF |
WB DP600 + DP600 | IF | - | IF | - | PIF |
RSW DP600 + 316SS | IF | IF | - | PO | PO * |
WB DP600 + 316SS | No weld | IF | - | PO * | PO * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arumugam, A.; Pagwiwoko, C.P.; Pramanik, A.; Basak, A.K. An Experimental and Simulation Study on the Effect of Adhesive in Weld Bonded Spot Weld Joints. Metals 2025, 15, 938. https://doi.org/10.3390/met15090938
Arumugam A, Pagwiwoko CP, Pramanik A, Basak AK. An Experimental and Simulation Study on the Effect of Adhesive in Weld Bonded Spot Weld Joints. Metals. 2025; 15(9):938. https://doi.org/10.3390/met15090938
Chicago/Turabian StyleArumugam, Aravinthan, Cosmas Pandit Pagwiwoko, Alokesh Pramanik, and Animesh Kumar Basak. 2025. "An Experimental and Simulation Study on the Effect of Adhesive in Weld Bonded Spot Weld Joints" Metals 15, no. 9: 938. https://doi.org/10.3390/met15090938
APA StyleArumugam, A., Pagwiwoko, C. P., Pramanik, A., & Basak, A. K. (2025). An Experimental and Simulation Study on the Effect of Adhesive in Weld Bonded Spot Weld Joints. Metals, 15(9), 938. https://doi.org/10.3390/met15090938