Abstract
The performance of ultra-high-purity copper sputtering targets is critical for nanoscale integrated circuit fabrication, yet challenges such as dynamic recovery and recrystallization hinder grain refinement and texture control. In the present work, cryogenic deformation was introduced to address these issues. Through electron backscatter diffraction (EBSD), X-ray diffraction (XRD), and mechanical testing, the microstructure, texture, and mechanical properties of 6N ultra-high-purity copper processed by room-temperature rolling (RTR) and cryorolling (CR) were comparatively investigated. Results reveal that RTR deformation is dominated by slip mechanisms; the RTR sample with 90% reduction exhibits obvious dynamic recrystallization (DRX) and forms a bimodal structure dominated by Copper ({112}⟨111⟩) and S ({123}⟨634⟩) textures. In contrast, CR suppresses thermal activation processes, enabling deformation mechanisms suggestive of twinning activity, leading to ultrafine fibrous structures, while shifting texture components toward Brass ({110}⟨112⟩) and S. Compared to RTR-processed samples, CR-processed samples possess superior mechanical performance. The CR sample with 90% reduction exhibits: a microhardness of 164.60 HV, a yield strength of 385.61 MPa, and a tensile strength of 648.02 MPa, which are, respectively, 33.2%, 91.7%, and 84.6% higher than those of RTR counterparts. Williamson–Hall analysis confirms that the CR sample with 90% reduction achieves finer substructure sizes (~133 nm) and higher stored energy (~22 J·mol−1) by suppressing dynamic recovery, providing a robust driving force for subsequent annealing. This work demonstrates that cryorolling optimizes microstructure and texture through twin-dislocation synergy, providing a fundamental basis for the development of advanced sputtering targets.