Metastable Ferromagnetic B2 Phase in AlCr Alloy Through Co Addition
Abstract
1. Introduction
2. Materials and Methods
2.1. Theoretical Modeling
2.2. Experimental Procedures
3. Results and Discussion
3.1. Theoretical Study of the Nominal Composition
3.2. Structural Analysis of the Al50Cr38Co12 Alloys
3.3. Magnetic Analysis of the Al50Cr38Co12 Alloys
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AFM | Antiferromagnetic |
| FM | Ferromagnetic |
| NM | Non-magnetic |
| PM | Paramagnetic |
| BCC | Body-centered cubic |
| SC | Simple cubic |
| DFT | Density functional theory |
| XRD | X-ray diffraction |
| SEM | Scanning electron microscopy |
| EDS | Energy-Dispersive Spectroscopy |
| LN2 | Liquid Nitrogen |
| TC | Curie temperature |
References
- Lengyel, A.; Gracheva, M.A.; Chumakov, A.I.; Bessas, D.; Sajti, S.; Deák, A.; Zolnai, Z.; Radnóczi, G.Z.; Horvath, Z.E.; Hegedűs, G.; et al. Investigation of metamagnetic transition in nanosized FeRh structures. Vacuum 2025, 240, 114533. [Google Scholar] [CrossRef]
- Qiao, K.; Zuo, S. Direct observation of the phase transition in FeRh alloy under temperature cycling. J. Magn. Magn. Mater. 2024, 601, 172178. [Google Scholar] [CrossRef]
- Chirkova, A.; Skokov, K.P.; Schultz, L.; Baranov, N.V.; Gutfleisch, O.; Woodcock, T.G. Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions. Acta Mater. 2016, 106, 15–21. [Google Scholar] [CrossRef]
- Vieira, R.M.; Eriksson, O.; Bergman, A.; Herper, H.C. High-Throughput Compatible Approach for Entropy Estimation in Magnetocaloric Materials: FeRh as a Test Case. J. Alloys Compd. 2021, 857, 157811. [Google Scholar] [CrossRef]
- Fawcett, E. Spin-density-wave antiferromagnetism in chromium. Rev. Mod. Phys. 1988, 60, 209–283. [Google Scholar] [CrossRef]
- Kvashnin, Y.O.; Cardias, R.; Szilva, A.; Di Marco, I.; Katsnelson, M.I.; Lichtenstein, A.I.; Nordström, L.; Klautau, A.B.; Eriksson, O. Microscopic origin of Heisenberg and non-Heisenberg exchange interactions in ferromagnetic bcc Fe. Phys. Rev. Lett. 2016, 116, 217202. [Google Scholar] [CrossRef]
- Cardias, R.; Szilva, A.; Bergman, A.; Di Marco, I.; Katsnelson, M.I.; Lichtenstein, A.I.; Nordström, L.; Klautau, A.B.; Eriksson, O.; Kvashnin, Y.O. The Bethe–Slater curve revisited: New insights from electronic structure theory. Sci. Rep. 2017, 7, 4058. [Google Scholar] [CrossRef]
- Kummamuru, R.K.; Soh, Y.A. Electrical effects of spin density wave quantization and magnetic domain walls in chromium. Nature 2008, 452, 859–863. [Google Scholar] [CrossRef]
- Zelený, M.; Friák, M.; Šob, M. Ab initio study of energetics and magnetism of Fe, Co, and Ni along the trigonal deformation path. Phys. Rev. B 2011, 83, 184424. [Google Scholar] [CrossRef]
- Aihemaiti, H.; Dastanpour, E.; Bergman, A.; Vitos, L. First-principles study of phase stability and magnetic properties of B2 AlCr, AlMn, AlFe, AlCo and AlNi aluminides. arXiv 2025, arXiv:2510.22013. [Google Scholar]
- Helander, T.; Tolochko, O. An experimental investigation of possible B2-ordering in the Al–Cr system. J. Phase Equilibria 1999, 20, 57–60. [Google Scholar] [CrossRef]
- Dastanpour, E.; Huang, S.; Schönecker, S.; Mao, H.; Ström, V.; Eriksson, O.; Varga, L.K.; Vitos, L. On the Structural and Magnetic Properties of Al-Rich High Entropy Alloys: A Joint Experimental-Theoretical Study. J. Phys. D Appl. Phys. 2023, 56, 015003. [Google Scholar] [CrossRef]
- Dastanpour, E.; Huang, S.; Ström, V.; Varga, L.K.; Vitos, L.; Schönecker, S. An Assessment of the Al50Cr21-XMn17+xCo12 (X=0, 4, 8) High-Entropy Alloys for Magnetocaloric Refrigeration Application. J. Alloys Compd. 2024, 984, 173977. [Google Scholar] [CrossRef]
- Dastanpour, E.; Huang, S.; Schönecker, S.; Ström, V.; Varga, L.K.; Eriksson, O.; Vitos, L. Magnetocaloric Properties of Ternary Al-Mn-Co Alloys. J. Alloys Compd. 2025, 1036, 182006. [Google Scholar] [CrossRef]
- Korniyenko, K.Y.; Kriklya, L.S.; Petyukh, V.M.; Tikhonova, I.B.; Sobolev, V.B.; Samelyuk, A.V. Phase Equilibria in the Al-Cr-Co System in the Range of Compositions 0–70 at.% Al. J. Phase Equilibria Diffus. 2021, 42, 118–141. [Google Scholar] [CrossRef]
- Andersson, J.O.; Helander, T.; Höglund, L.; Shi, P.; Sundman, B. Thermo-Calc & DICTRA, Computational Tools for Materials Science. Calphad 2002, 26, 273–312. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, 1133–1138. [Google Scholar] [CrossRef]
- Vitos, L. Computational Quantum Mechanics for Materials Engineering; Springer: London, UK, 2007. [Google Scholar]
- Vitos, L. Total-Energy Method Based on the Exact Muffin-Tin Orbitals Theory. Phys. Rev. B Condens. Matter Mater. Phys. 2001, 64, 014107. [Google Scholar] [CrossRef]
- Perdew, J.P.; Zunger, A. Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems. Phys. Rev. B 1981, 23, 5048–5079. [Google Scholar] [CrossRef]
- Soven, P. Coherent-Potential Model of Substitutional Disordered Alloys. Phys. Rev. 1967, 156, 809–813. [Google Scholar] [CrossRef]
- Gyorffy, B.L. Coherent-Potential Approximation for a Nonoverlapping-Muffin-Tin-Potential Model of Random Substitutional Alloys. Phys. Rev. B 1972, 5, 2382–2384. [Google Scholar] [CrossRef]
- Gyorffy, B.L.; Pindor, A.J.; Staunton, J.; Stocks, G.M.; Winter, H. A First-Principles Theory of Ferromagnetic Phase Transitions in Metals. J. Phys. F Met. Phys. 1985, 15, 1337–1386. [Google Scholar] [CrossRef]
- Aihemaiti, H.; Dastanpour, E.; Chaturvedi, S.; Huang, S.; Bergman, A.; Vitos, L. Magnetic transition in B2 Al-Cr-Co alloys. arXiv 2025, arXiv:2510.21982. [Google Scholar]
- Köster, W.; Wachtel, E.; Grube, K. Structure and magnetic properties of aluminum-chromium alloys. Int. J. Mater. Res. 1963, 54, 393–401. [Google Scholar] [CrossRef]






| State | Structure | Chemical Composition | Phase Fraction (%) |
|---|---|---|---|
| As-cast | Bright: B2 | Al51.2±2.1Cr20.2±1.2Co28.6±1.4 | 54 |
| Dark: BCC + Al8Cr5 | Al55.1±2.3Cr37.4±1.9Co7.5±1.0 | 46 | |
| Annealed | Bright: B2 | Al47.8±0.5Cr16.1±0.2Co36.1±0.6 | 27 |
| Gray: BCC | Al37.6±0.4Cr57.5±0.3Co4.9±0.2 | 32 | |
| Dark: Al8Cr5 | Al52.5±1.0 Cr42.3±1.0Co5.3±0.2 | 41 |
| State | Cal. TC (K) | Total Magnetic Moment (μB/atom) | Local Magnetic Moment (μB/atom) | |||
|---|---|---|---|---|---|---|
| As-cast | 170 | 0.47 | Al | Al | Cr | Co |
| 0.02 | 0 | 2.11 | 0.09 | |||
| Annealed | 163 | 0.26 | Al | Cr | Cr | Co |
| 0.02 | −1.12 | 1.92 | 0.09 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dastanpour, E.; Aihemaiti, H.; Ström, V.; Vitos, L. Metastable Ferromagnetic B2 Phase in AlCr Alloy Through Co Addition. Metals 2025, 15, 1368. https://doi.org/10.3390/met15121368
Dastanpour E, Aihemaiti H, Ström V, Vitos L. Metastable Ferromagnetic B2 Phase in AlCr Alloy Through Co Addition. Metals. 2025; 15(12):1368. https://doi.org/10.3390/met15121368
Chicago/Turabian StyleDastanpour, Esmat, Haireguli Aihemaiti, Valter Ström, and Levente Vitos. 2025. "Metastable Ferromagnetic B2 Phase in AlCr Alloy Through Co Addition" Metals 15, no. 12: 1368. https://doi.org/10.3390/met15121368
APA StyleDastanpour, E., Aihemaiti, H., Ström, V., & Vitos, L. (2025). Metastable Ferromagnetic B2 Phase in AlCr Alloy Through Co Addition. Metals, 15(12), 1368. https://doi.org/10.3390/met15121368

