Multimodal Analysis Unveils the Correlation Between Graphite Anode Characteristics and Operational Longevity in Pr/Nd Rare Earth Metals Electrolysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analysis and Testing Methods
2.3. Statistical Analysis
3. Results
3.1. Morphological Changes in the Corroded Graphite Anode
- (1)
- Primary electrochemical reactions:
- (2)
- Secondary chemical reactions:
3.2. Mass Change of the Graphite Anodes
3.3. Influence of the Basic Physical Properties of Pristine Graphite Anodes
3.4. Impact of Elemental Composition
3.5. Impact of the Crystallography and Molecular Structure
3.6. Influence of Surface Macropores on Recycled Graphite Anodes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rare Earth Prices Have Soared by over 100,000 Yuan per Ton, Marking a Reversal in Performance. Available online: https://www.yicai.com/video/102787835.html (accessed on 3 November 2025).
- Zhou, Q.; Liao, J.; Liao, C.; Zhao, B. Phase Equilibrium Study of Rare Earth Oxide–Fluoride Salt System: A Review. Metals 2024, 14, 314. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Luan, Y.; Yu, H.; Li, D. Research Progress in Preparation and Purification of Rare Earth Metals. Metals 2020, 10, 1376. [Google Scholar] [CrossRef]
- Su, C.; Sun, Y.; Tang, H.; Wang, Y.; Tao, F.; Xu, Z.; Wei, C.; Jiang, Z.; Wei, S. Investigation of the reduction process of Nd(III) ions on tungsten electrode in LiF-NdF3-Nd2O3 molten salt at 1323 K. Chem. Eng. J. 2025, 508, 160892. [Google Scholar] [CrossRef]
- Liao, C.; Que, L.; Fu, Z.; Deng, P.; Li, A.; Wang, X.; Chen, S. Research Status of Electrolytic Preparation of Rare Earth Metals and Alloys in Fluoride Molten Salt System: A Mini Review of China. Metals 2024, 14, 407. [Google Scholar] [CrossRef]
- Li, Z.; Guo, J.; Hu, R. Graphite Anode, Graphite Crucibles Breakage Mechanism and Their Protections Research Progress in Electro-deoxidation. Mater. Rev. Nano New Mater. 2011, 25, 194–198. [Google Scholar]
- Sure, J.; Ravi Shankar, A.; Ramya, S.; Mallika, C.; Kamachi Mudali, U. Corrosion behaviour of carbon materials exposed to molten lithium chloride–potassium chloride salt. Carbon 2014, 67, 643–655. [Google Scholar] [CrossRef]
- Lacarbonara, G.; Chini, S.; Ratso, S.; Kruusenberg, I.; Arbizzani, C. A MnOx–graphitic carbon composite from CO2 for sustainable Li-ion battery anodes. Mater. Adv. 2022, 3, 7087–7097. [Google Scholar] [CrossRef]
- Najafli, E.; Ratso, S.; Ivanov, Y.P.; Gatalo, M.; Pavko, L.; Yörük, C.R.; Walke, P.; Divitini, G.; Hodnik, N.; Kruusenberg, I. Sustainable CO2-Derived Nanoscale Carbon Support to a Platinum Catalyst for Oxygen Reduction Reaction. ACS Appl. Nano Mater. 2023, 6, 5772–5780. [Google Scholar] [CrossRef]
- Lin, H. Analysis of Factors Affecting the Service Life of Graphite Anodes in Rare Earth Electrolysis Processes. Mech. Electr. Technol. 2012, 35, 43–46. [Google Scholar] [CrossRef]
- Wang, R.; Lu, G.; Qiao, W.; Sun, Z.; Zhuang, H.; Yu, J. Catalytic effect of praseodymium oxide additive on the microstructure and electrical property of graphite anode. Carbon 2015, 95, 940–948. [Google Scholar] [CrossRef]
- Xue, J.; Liu, N.; Liu, Z. Molten salt electrolysis Nd failure and impregnated graphite anode borate protection. Rare Met. 2016, 40, 806–815. [Google Scholar]
- Daneshmand, S.; Vini, M.H. Investigation of TiO2 /SiC Coating on Graphite Electrodes for Electrical Arc Furnaces. J. Mater. Eng. Perform. 2024, 33, 3188–3206. [Google Scholar] [CrossRef]
- Kuptsov, K.A.; Antonyuk, M.N.; Sheveyko, A.N.; Shtansky, D.V. Hydrophobic, anti-ice, wear- and corrosion-resistant C-(Ti)-PTFE coatings on Ti obtained by electrospark deposition using PTFE-impregnated graphite electrode. Surf. Coat. Technol. 2023, 465, 129621. [Google Scholar] [CrossRef]
- Alian Moghadam, H.; Jabbari, M.; Daneshmand, S.; Rasouli Jazi, S.; Khosravi, A. Effects of TiO2/SiC/SiO2 coating on graphite electrode consumption in sublimation and oxidation states as determined by EAF simulation and experimental methods. Surf. Coat. Technol. 2021, 420, 127340. [Google Scholar] [CrossRef]
- GB/T 24528-2009[S]; Method for Determining the Volume Density of Carbon Materials. National Technical Committee for Steel Standardization: Beijing, China, 2009.
- GB/T 1431-2019[S]; Determination Method of Compressive Strength of Carbon Materials. National Technical Committee for Steel Standardization (SAC/TC 183): Beijing, China, 2019.
- GB/T3074.4-2016[S]; Determination Method of the Coefficient of Thermal Expansion (CTE) of Graphite Electrodes. National Technical Committee for Steel Standardization: Beijing, China, 2016.
- GB/T 24525-2009[S]; Method for Determining the Resistivity of Carbon Materials. National Technical Committee for Steel Standardization: Beijing, China, 2009.
- GB/T 24529-2009[S]; Determination Method of Apparent Porosity of Carbon Materials. National Technical Committee for Steel Standardization: Beijing, China, 2009.
- GB/T 22588-2008[S]; The Flash Method Is Used to Measure the Thermal Diffusivity or Thermal Conductivity. National Technical Committee for Standardization of Refractory Materials: Beijing, China, 2008.
- Franklin, R.E. Crystallite Growth in Graphitizing and Non-Graphitizing Carbons. Proc. R. Soc. A Math. Phys. Eng. Sci. 1951, 209, 196–218. [Google Scholar] [CrossRef]
- Xu, J.; Yan, W.; Wu, D. Determination of graphitization degree and crystallinity of carbon materials by XRD peak fitting method. J. Wuhan Univ. Sci. Technol. (Nat. Sci. Ed.) 2009, 32, 522–525. [Google Scholar] [CrossRef]
- Barnakov, C.N.; Khokhlova, G.P.; Malysheva, V.Y.; Popova, A.N.; Ismagilov, Z.R. X-ray diffraction analysis of the crystal structures of different graphites. Solid Fuel Chem. 2015, 49, 25–29. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef]
- Moseenkov, S.I.; Kuznetsov, V.L.; Zolotarev, N.A.; Kolesov, B.A.; Prosvirin, I.P.; Ishchenko, A.V.; Zavorin, A.V. Investigation of Amorphous Carbon in Nanostructured Carbon Materials (A Comparative Study by TEM, XPS, Raman Spectroscopy and XRD). Materials 2023, 16, 1112. [Google Scholar] [CrossRef]
- Li, J. Research on Improving the Utilization Rate of Graphite Anodes in Molten Salt Electrolysis of Rare Earth Oxides. Master’s Thesis, Lanzhou University, Lanzhou, China, 2025. [Google Scholar]
- Wang, Z. Research on Anode Consumption Law and Structure Optimization of Ten Thousand Amps Rare Earth Electrolytic Cell. Jiangxi Univ. Sci. Technol. 2023, 62, 509–516. [Google Scholar]
- Vu, T.T.; La, D.D.; Le, L.V.; Pham, T.K.; Nguyen, M.A.; Nguyen, T.H.; Dang, T.D.; Um, M.-J.; Chung, W.; Nguyen, D.D. Purification of Spherical Graphite as Anode for Li-Ion Battery: A Comparative Study on the Purifying Approaches. Micromachines 2024, 15, 827. [Google Scholar] [CrossRef] [PubMed]
- Wendt, H.; Khalil, A.; Padberg, C.E. High-temperature chlorine corrosion of technical carbons Part II. Anodic corrosion in chloride melt. J. Appl. Electrochem. 1991, 21, 929–934. [Google Scholar] [CrossRef]
- Fink, K.E.; Polzin, B.J.; Vaughey, J.T.; Major, J.J.; Dunlop, A.R.; Trask, S.E.; Jeka, G.T.; Spangenberger, J.S.; Keyser, M.A. Influence of metallic contaminants on the electrochemical and thermal behavior of Li-ion electrodes. J. Power Sources 2022, 518, 230760. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.; Li, J.; Ma, Z. Advantages of Structure and Electrochemical Properties of Graphene Prepared from Tectonically Deformed Coal. ACS Omega 2023, 8, 25142–25154. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Q. The New Method of XRD Measurement of the Degree of Disorder for Anode Coke Material. Crystals 2017, 7, 5. [Google Scholar] [CrossRef]
- Xu, X.; Cao, D.; Wei, Y.; Wang, A.; Chen, G.; Wang, T.; Wang, G.; Chen, X. Impact of Graphitization Degree on the Electrochemical and Thermal Properties of Coal. ACS Omega 2024, 9, 2443–2456. [Google Scholar] [CrossRef]
- Zhang, L.; She, D.; Shi, L. Influence of graphitization degree of nuclear graphite on HTGR reactor physics calculation. Ann. Nucl. Energy 2020, 143, 107458. [Google Scholar] [CrossRef]
- Sieradzka, M.; Ślusarczyk, C.; Fryczkowski, R.; Janicki, J. Insight into the effect of graphite grain sizes on the morphology, structure and electrical properties of reduced graphene oxide. J. Mater. Res. Technol. 2020, 9, 7059–7067. [Google Scholar] [CrossRef]
- Cui, W.; Xu, H.; Chen, J.-h.; Ren, S.-b.; He, X.-b.; Qu, X.-h. Effect of graphite powder as a forming filler on the mechanical properties of SiCp/Al composites by pressure infiltration. Int. J. Miner. Metall. Mater. 2016, 23, 601–607. [Google Scholar] [CrossRef]
- Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005, 43, 1731–1742. [Google Scholar] [CrossRef]
- Sheng, C. Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity. Fuel 2007, 86, 2316–2324. [Google Scholar] [CrossRef]
- Aswathappa, S.; Dai, L.; Sathiyadhas, S.J.D.; Kumar, R.S.; Freire, P.T.C.; Selvakumar, C.L.; Pham, P.V. Acoustic shock wave-induced structural phase stability of tetrahedral amorphous carbon, graphite and graphene by Raman and X-ray photoelectron spectroscopic approaches. Diam. Relat. Mater. 2025, 153, 112034. [Google Scholar] [CrossRef]
- Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.; Cançado, L.G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1290. [Google Scholar] [CrossRef]
- Thapliyal, V.; Alabdulkarim, M.E.; Whelan, D.R.; Mainali, B.; Maxwell, J.L. A concise review of the raman spectra of carbon allotropes. Diam. Relat. Mater. 2022, 127, 109180. [Google Scholar] [CrossRef]
- Wang, H.; Guo, L.; Zhong, Y.; Lin, J.; Zhang, J.; Mao, X.; Wang, S. Carbon black densified matrix graphite to enhance its anti-infiltration capability against molten salt. Carbon 2025, 233, 119844. [Google Scholar] [CrossRef]








| Anodes | Raw Materials | Processes | Sources |
|---|---|---|---|
| #1 | Recycled graphite anodes: Graphite chips, and coal tar pitch as the binder. | After pretreatment such as crushing, screening and purification, kneading, Extrusion molding, baking, and mechanical processing; No impregnation, reroasting, graphitization treatment. | Fangda Carbon New Material Co., Ltd., Lanzhou, China. |
| #2 | Common petroleum coke, the aggregate particle size is approximately 2–4 mm, 4–8 mm. | Crushing, screening, kneading, extrusion molding, high-temperature calcination, impregnation, reroasting, graphitization, mechanical processing. | |
| #3 | High-quality petroleum coke, the aggregate particle size is approximately 0.5–2 mm. | Crushing, screening, kneading, Isostatic pressing molding, high-temperature calcination, impregnation, re-roasting, graphitization, mechanical processing. | |
| #4 | Recycled graphite anodes: High-power graphite powder, coal tar pitch is used as the binder. | After pretreatment such as crushing, screening and purification, kneading, extrusion molding, baking, and mechanical processing; No impregnation, reroasting, graphitization treatment. | Kangda New Materials Co., Ltd., Jiexiu, China. |
| #5 | Aohua New Materials Co., Ltd., Xiangcheng, China. |
| Anodes | Mass of Pristine Anodes (kg) | Mass of Corroded Anodes (kg) | Corrosion Mass Change (kg) |
|---|---|---|---|
| #1 | 19.2 ± 0.2 | 7.9 ± 0.8 | 11.3 ± 0.8 |
| #2 | 20.6 ± 0.3 | 10.4 ± 0.7 | 10.2 ± 0.8 |
| #3 | 20.7 ± 0.2 | 10.1 ± 0.9 | 10.6 ± 0.9 |
| #4 | 19.3 ± 0.3 | 8.9 ± 0.5 | 10.4 ± 0.6 |
| #5 | 19.1 ± 0.3 | 7.8 ± 0.5 | 11.3 ± 0.6 |
| Anodes | Bulk Density (g/cm3) | Apparent Porosity (%) | CTE (×10−6/°C) | Thermal Conductivity (Room Temperature) (W/(m·k)) | Electrical Resistivity (μΩ·m) |
|---|---|---|---|---|---|
| #1 | 1.63 ± 0.02 | 19.07 ± 0.51 | 2.92 ± 0.10 | 30.61 ± 1.58 | 21.66 ± 1.15 |
| #2 | 1.72 ± 0.02 | 16.82 ± 0.43 | 1.56 ± 0.08 | 120.73 ± 3.54 | 9.43 ± 0.33 |
| #3 | 1.74 ± 0.02 | 13.80 ± 0.38 | 1.56 ± 0.08 | 151.37 ± 4.13 | 7.15 ± 1.08 |
| #4 | 1.67 ± 0.02 | 19.22 ± 0.55 | 2.87 ± 0.09 | 29.43 ± 1.52 | 20.28 ± 1.10 |
| #5 | 1.59 ± 0.02 | 16.90 ± 0.49 | 3.91 ± 0.12 | 35.05 ± 1.67 | 23.60 ± 1.74 |
| Graphite Anodes | Crystal Plane Spacing d002 (nm) | Degree of Graphitization (%) | Grain Size (nm) |
|---|---|---|---|
| #1 | 0.33658 ± 0.00021 | 86.2 ± 1.5 | 29.9 ± 3.6 |
| #2 | 0.33594 ± 0.00015 | 93.7 ± 0.8 | 64.5 ± 3.1 |
| #3 | 0.33588 ± 0.00012 | 94.5 ± 0.9 | 59.6 ± 2.8 |
| #4 | 0.33654 ± 0.00018 | 86.6 ± 1.8 | 30.2 ± 2.3 |
| #5 | 0.33667 ± 0.00023 | 85.3 ± 1.3 | 16.8 ± 2.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, B.; Xu, Y.; Zhu, Z.; Xu, L.; Sun, W.; Liang, F.; Chen, B. Multimodal Analysis Unveils the Correlation Between Graphite Anode Characteristics and Operational Longevity in Pr/Nd Rare Earth Metals Electrolysis. Metals 2025, 15, 1272. https://doi.org/10.3390/met15111272
Jia B, Xu Y, Zhu Z, Xu L, Sun W, Liang F, Chen B. Multimodal Analysis Unveils the Correlation Between Graphite Anode Characteristics and Operational Longevity in Pr/Nd Rare Earth Metals Electrolysis. Metals. 2025; 15(11):1272. https://doi.org/10.3390/met15111272
Chicago/Turabian StyleJia, Baoling, Yangtao Xu, Zhenxu Zhu, Lihong Xu, Wei Sun, Feng Liang, and Boming Chen. 2025. "Multimodal Analysis Unveils the Correlation Between Graphite Anode Characteristics and Operational Longevity in Pr/Nd Rare Earth Metals Electrolysis" Metals 15, no. 11: 1272. https://doi.org/10.3390/met15111272
APA StyleJia, B., Xu, Y., Zhu, Z., Xu, L., Sun, W., Liang, F., & Chen, B. (2025). Multimodal Analysis Unveils the Correlation Between Graphite Anode Characteristics and Operational Longevity in Pr/Nd Rare Earth Metals Electrolysis. Metals, 15(11), 1272. https://doi.org/10.3390/met15111272
