Effect of Tempering Temperature on Carbide Evolution and Mechanical Response of Deep Cryogenically Treated Martensitic Stainless Steel
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials Preparation and Heat Treatments
2.2. Microstructure Analysis
2.3. Mechanical Properties Analysis
2.4. Magneto-Induction Method
3. Results and Discussion
3.1. Microstructure Analysis
3.2. Magnetic Permeability Method
3.3. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Moura, A.N.; Favarato, L.N.O.; Amorim, D.d.S.C.; Alcantara, C.M.d.; Marques, M.C.S.; Orlando, M.T.D.A.; Vieira, E.A.; Labiapari, W.d.S.; da Cunha, M.A.; de Oliveira, T.R. Effect of austenitization temperature on microstructure, crystallographic aspects, and mechanical properties of AISI 420 martensitic stainless steel. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2024, 909, 146835. [Google Scholar] [CrossRef]
- Li, S.; Xiao, M.; Ye, G.; Zhao, K.; Yang, M. Effects of deep cryogenic treatment on microstructural evolution and alloy phases precipitation of a new low carbon martensitic stainless bearing steel during aging. Mater. Sci. Eng. A 2018, 732, 167–177. [Google Scholar] [CrossRef]
- Kang, C.; Liu, F.; Jiang, Z.; Suo, H.; Yu, X.; Zhang, H.; Ding, S. Effect of cryogenic treatment on microstructure evolution and mechanical properties of high nitrogen plastic die steel. J. Mater. Res. Technol. 2021, 15, 5128–5140. [Google Scholar] [CrossRef]
- Prieto, G.; Ipiña, J.P.; Tuckart, W. Cryogenic treatments on AISI 420 stainless steel: Microstructure and mechanical properties. Mater. Sci. Eng. A 2014, 605, 236–243. [Google Scholar] [CrossRef]
- Singh, G.; Pandey, K. Effect of cryogenic treatment on properties of materials: A review. Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng. 2022, 236, 1758–1773. [Google Scholar] [CrossRef]
- Jurči, P.; Dlouhý, I. Cryogenic Treatment of Martensitic Steels: Microstructural Fundamentals and Implications for Mechanical Properties and Wear and Corrosion Performance. Materials 2024, 17, 548. [Google Scholar] [CrossRef]
- Zheng, S.-Q.; Jiang, W.; Bai, X.; Li, S.-H.; Zhao, K.-Y.; Zhu, X.-K. Effect of deep cryogenic treatment on formation of reversed austenite in super martensitic stainless steel. J. Iron Steel Res. Int. 2015, 22, 451–456. [Google Scholar] [CrossRef]
- Jovičević-Klug, P.; Jovičević-Klug, M.; Thormählen, L.; McCord, J.; Rohwerder, M.; Godec, M.; Podgornik, B. Austenite reversion suppression with deep cryogenic treatment: A novel pathway towards 3rd generation advanced high-strength steels. Mater. Sci. Eng. A 2023, 873, 145033. [Google Scholar] [CrossRef]
- Jovičević-Klug, P.; Jovičević-Klug, M.; Sever, T.; Feizpour, D.; Podgornik, B. Impact of steel type, composition and heat treatment parameters on effectiveness of deep cryogenic treatment. J. Mater. Res. Technol. 2021, 14, 1007–1020. [Google Scholar] [CrossRef]
- Günerli, E.; Bayramoglu, M.; Geren, N. Volume fraction of retained austenite in 1.2842 tool steel as a function of tempering temperature. Eur. Mech. Sci. 2022, 6, 263–268. [Google Scholar] [CrossRef]
- Datta, K.; Delhez, R.; Bronsveld, P.M.; Beyer, J.; Geijselaers, H.J.M.; Post, J. A low-temperature study to examine the role of ε-martensite during strain-induced transformations in metastable austenitic stainless steels. Acta Mater. 2009, 57, 3321–3326. [Google Scholar] [CrossRef]
- Fatih, M.R.R.; Chen, H.-J.; Lin, H.-C. The Effect of Cryogenic Treatment and Tempering Duration on the Microstructure and Mechanical Properties of Martensitic Stainless Steel 13Cr-2Ni-2Mo. Materials 2025, 18, 1784. [Google Scholar] [CrossRef] [PubMed]
- H.F. GmbH. FERITSCOPE® FMP30 Operator’s Manual: Coating Thickness, Material Analysis, Microhardness, Material Testing; H.F. GmbH: Sindelfingen, Germany, 2016; Available online: https://www.helmut-fischer.com (accessed on 14 October 2025).
- Ionescu, L.G.; Pantawane, M.V.; Tănase, C.; Sichim, R.V.; Dascălu, C.A.; Ghiban, B. Evaluation of Retained Austenite in Carburized Bearing Steel Using Magneto-Inductive Method. Crystals 2023, 13, 1173. [Google Scholar] [CrossRef]
- Kaňa, V.; Pernica, V.; Zadera, A.; Krutis, V. Comparison of Methods for Determining the Ferrite Content in Duplex Cast Steels. Arch. Foundry Eng. 2023, 19, 85–90. [Google Scholar] [CrossRef]
- Takaki, S.; Ngo, H.K.L.; Nakada, N.; Tsuchiyama, T. Strengthening Mechanism in Ultra Low Carbon Martensitic Steel. ISIJ Int. 2012, 52, 710–716. [Google Scholar] [CrossRef]
- Rahimi, R.; Ritzenhoff, R.; Biermann, H.; Mola, J. Low-Temperature Tempering Reactions in a High Nitrogen Martensitic Stainless Steel by Magnetic Saturation Measurements. In Proceedings of the High Nitrogen Steels 2014, Hamburg, Germany, 16–19 September 2014. [Google Scholar]
- Cong, J.; Yang, Y.; Zhu, H.; Shang, X.; Wu, H.; Song, Z.; Wang, X.; Xu, X. Study on the Coarsening Behavior of Interphase Precipitates and Random Precipitates in Steel Under the High-Temperature Environment of Fire. Metals 2025, 15, 73. [Google Scholar] [CrossRef]
- Weng, Z.; Gu, K.; Zheng, J.; Cui, C.; Zhang, M.; Wang, J. Cryogenically martensitic transformation and its effects on tempering behaviors of bearing steel. Mater. Charact. 2022, 190, 112066. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, C.; Guo, J.; Dong, G.; Wang, S.; Gao, J.; Wu, H.; Zhao, H.; Lu, J.; Huang, Y.; et al. Investigating the influence mechanisms of cryogenic treatment on mechanical properties and wear resistance of AISI 4340 steel. J. Mater. Res. Technol. 2025, 38, 3264–3276. [Google Scholar] [CrossRef]
- Xu, G.; Huang, P.; Feng, Z.; Wei, Z.; Zu, G. Effect of Deep Cryogenic Time on Martensite Multi-Level Microstructures and Mechanical Properties in AISI M35 High-Speed Steel. Materials 2022, 15, 6618. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H.; Honeycombe, S. The Tempering of Martensite. In Steels; Elsevier: Amsterdam, The Netherlands, 2006; pp. 183–208. [Google Scholar]
- Hosseini, N.; Forouzan, F.; Vuorinen, E. In-situ microstructural evolution during quenching and partitioning of a high-carbon steel by high-temperature X-Ray Diffraction. Mater. Today Commun. 2022, 31, 103503. [Google Scholar] [CrossRef]
- Talebi, S.H.; Jahazi, M.; Melkonyan, H. Retained Austenite Decomposition and Carbide Precipitation during Isothermal Tempering of a Medium-Carbon Low-Alloy Bainitic Steel. Materials 2018, 11, 1441. [Google Scholar] [CrossRef] [PubMed]
- Bhadeshia, H. Solution to the Bagaryatskii and Isaichev ferrite–cementite orientation relationship problem. Mater. Sci. Technol. 2018, 34, 1666–1668. [Google Scholar] [CrossRef]
- Liu, T.; Li, T.; Liu, X. TEM and electron diffraction analysis of ω-Fe to cementite transformation in quenched and tempered high carbon steels. AIP Adv. 2019, 9, 045219. [Google Scholar] [CrossRef]
- Zhong, N.; Wang, X.; Guo, Z.; Rong, Y. Orientation Relationships between Ferrite and Cementite by Edge-to-edge Matching Principle. J. Mater. Sci. Technol. 2011, 27, 475–480. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, W.; Zhang, T.; Sun, Z.; Wang, Y.; Fan, Y.; Dong, B. Assessment of the correlation between M23C6 precipitates and pitting corrosion resistance of 0Cr13 martensitic stainless steel. Corros. Sci. 2021, 189, 109580. [Google Scholar] [CrossRef]
- Ma, D.-S.; Chi, H.-X.; Jian, Z.; Yong, Q. Microstructure and Mechanical Properties of Martensitic Stainless Steel 6Cr15MoV. J. Iron Steel Res. Int. 2012, 19, 56–61. [Google Scholar] [CrossRef]
- Jiang, W.; Wu, D.; Zhang, Q.; Li, M.; Liu, W. Effect of Tempering Time on the Microstructure and Properties of Martensitic Stainless Steel. Metals 2024, 14, 322. [Google Scholar] [CrossRef]
- Kaneko, K.; Fujita, K.; Sadakata, A.; Tomokiyo, Y.; Matsumura, S. Nanostructural and nanoelemental analysis of metastable M3C-type carbides with alloy-rich layer in heat resistant 2Cr-martensitic steel. Scr. Mater. 2003, 48, 761–765. [Google Scholar] [CrossRef]
- Wang, R.; Li, F.; Wu, Z.; Kang, Y.; Fan, J.; Yu, Z.; Yan, Z.; Du, S.; Eckert, J. Precipitation and Transformation of Carbides during Tempering of 7Cr14 Martensitic Stainless Steel. Steel Res. Int. 2024, 95, 2300248. [Google Scholar] [CrossRef]
- Wieczerzak, K.; Bala, P.; Dziurka, R.; Tokarski, T.; Cios, G.; Koziel, T.; Gondek, L. The effect of temperature on the evolution of eutectic carbides and M7C3 → M23C6 carbides reaction in the rapidly solidified Fe-Cr-C alloy. J. Alloys Compd. 2017, 698, 673–684. [Google Scholar] [CrossRef]
- Chen, H.J.; Hsiao, P.-C.; Chien, H.-K.; Lin, K.; Chuo, Y.-T.; Huang, C.-Y.; Lin, H.-C. Effects of heat treatment on microstructure, mechanical properties and corrosion resistance 13Cr-2Ni-2Mo martensitic stainless steel. Mater. Charact. 2025, 223, 114909. [Google Scholar] [CrossRef]
- Gorunov, A.I. Investigation of M7C3, M23C6 and M3C carbides synthesized on austenitic stainless steel and carbon fibers using laser metal deposition. Surf. Coat. Technol. 2020, 401, 126294. [Google Scholar] [CrossRef]
- Channa, I.; Shah, A.A.; Abro, S.; Siddiqui, M.; Mujahid, M.; Chandio, A. Effect of Tempering Temperature on the Properties of Martensitic stainless steel (AISI 420). Sukkur IBA J. Emerg. Technol. 2019, 20, 1. [Google Scholar]
- Celada-Casero, C.; Kwakernaak, C.; Sietsma, J.; Santofimia, M.J. The influence of the austenite grain size on the microstructural development during quenching and partitioning processing of a low-carbon steel. Mater. Des. 2019, 178, 107847. [Google Scholar] [CrossRef]
- Wang, X.; Ding, R.; Hu, C.; Yang, D.; Wu, Y.; Liu, L.; Lin, X. Influence of tempering treatment on the microstructure evolution and mechanical properties of laser-cladding high-strength iron-based alloy coatings. J. Mater. Res. Technol. 2025, 38, 4662–4675. [Google Scholar] [CrossRef]
- Liu, Y.-r.; Ye, D.; Yong, Q.-l.; Su, J.; Zhao, K.-y.; Jiang, W. Effect of Heat Treatment on Microstructure and Property of Cr13 Super Martensitic Stainless Steel. J. Iron Steel Res. Int. 2011, 18, 60–66. [Google Scholar] [CrossRef]
- Kim, J.H.; Miyamoto, G.; Shibata, A.; Hojo, T.; Koyama, M.; Zhang, Y.; Furuhara, T. Influence of austenite grain boundary misorientation on hydrogen-induced intergranular crack propagation in a medium carbon martensitic steel. Acta Mater. 2024, 274, 120036. [Google Scholar] [CrossRef]
- Yang, G.; Xia, S.L.; Zhang, F.C.; Branco, R.; Long, X.Y.; Li, Y.G.; Li, J.H. Effect of tempering temperature on monotonic and low-cycle fatigue properties of a new low-carbon martensitic steel. Mater. Sci. Eng. A 2021, 826, 141939. [Google Scholar] [CrossRef]
- Freeman, F.S.H.B.; Sharp, J.; Xi, J.; Todd, I. Influence of solidification cell structure on the martensitic transformation in additively manufactured steels. Addit. Manuf. 2019, 30, 100917. [Google Scholar] [CrossRef]
- Lucas, F.; Sandim, M.; Sandim, H.; Santos, D.B.; Renzetti, R. Quantification of retained austenite by X-ray diffraction and saturation magnetization in a supermartensitic stainless steel. Mater. Charact. 2016, 115, 90–96. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, X.; He, W.; Li, J.; Zhang, J.; Li, D.; Li, S. Influence of Deep Cryogenic Treatment on Microstructural Evolution and Transformation Kinetics Simulation by Finite Element Method of Low-Carbon High-Alloy Martensitic-Bearing Steel. Steel Res. Int. 2022, 93, 2100785. [Google Scholar] [CrossRef]
- Das, D.; Dutta, A.; Ray, K.K. Inconsistent wear behaviour of cryotreated tool steels: Role of mode and mechanism. Mater. Sci. Technol. 2009, 25, 1249–1257. [Google Scholar] [CrossRef]
- Yıldız, E.; Altan Özbek, N. Investigation of the effects of shallow and deep cryogenic treatment on the mechanical and microstructural properties of AISI 431 martensitic stainless steel. Ironmak. Steelmak. 2022, 6, 74–82. [Google Scholar] [CrossRef]
- Maissara, K.; Forouzan, F.; Åkerfeldt, P.; Timokhina, I.; Åkerström, P.; Vuorinen, E.; Antti, M.-L. Effect of Tempering on Microstructure and Tensile Properties of Ultra-High Strength Steels for Press Hardening Applications. Metall. Mater. Trans. A 2025, 56, 2570–2585. [Google Scholar] [CrossRef]
- Su, Y.-Y.; Chiu, L.-H.; Chen, F.-S.; Lin, S.-C.; Pan, Y.-T. Residual Stresses and Dimensional Changes Related to the Lattice Parameter Changes of Heat-Treated JIS SKD 11 Tool Steels. Mater. Trans. 2014, 55, 831–837. [Google Scholar] [CrossRef]
- Godbole, K.; Das, C.; Panigrahi, B. Tailoring of mechanical properties of AISI 410 martensitic stainless steel through tempering. In Proceedings of the Metal 2017, Brno, Czech Republic, 24–26 May 2017. [Google Scholar]
- Suwanpatcharakul, K.; Saenarjhan, N.; Nakthong, N.; Lothongkum, A.W.; Lothongkum, G. Effect of tempering temperature on impact energy of AISI 410 martensitic stainless steel at low temperatures. Mater. Test. 2021, 63, 699–704. [Google Scholar] [CrossRef]
- Cui, A.; Wang, X.; Cui, Y. Multiscale modelling of precipitation hardening: A review. J. Mater. Sci. Mater. Theory 2024, 8, 13. [Google Scholar] [CrossRef]
- Lv, Z.-w.; Fan, J.; Wang, R.; Yu, Z.-q.; Kang, Y.; Hu, Y.; Tuo, L.-f.; Eckert, J.; Yan, Z.-j. Microstructural evolution during tempering process and mechanical properties of Cr–Ni–Mo–V/Nb high strength steel. J. Iron Steel Res. Int. 2025, 32, 270–281. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Bu, H.; Qi, H.; Zuo, P.; Li, S.; Li, M. Effects of deep cryogenic treatment on the microstructure evolution, mechanical and thermal fatigue properties of H13 hot work die steel. J. Mater. Res. Technol. 2023, 27, 8100–8118. [Google Scholar] [CrossRef]
Sample | C | Cr | Ni | Mo | Si | Mn | N | Fe |
---|---|---|---|---|---|---|---|---|
13Cr–2Ni–2Mo MSS | 0.17 | 12.90 | 1.80 | 1.92 | 0.36 | 0.08 | 0.12 | Bal. |
Tempering Temperatures (°C) | α’ (%) | γ (%) | Carbide (%) |
---|---|---|---|
0 | 98.78 | 0.15 | 1.07 |
200 | 97.70 | 0.20 | 2.10 |
400 | 95.72 | 0.93 | 3.35 |
500 | 96.04 | 0.50 | 3.46 |
600 | 98.13 | 0.14 | 1.73 |
Sample | Ultimate Load (N) | Vertical Displacement (mm) |
---|---|---|
QCT200 | 2665.13 | 11.18 |
QT200 | 2772.11 | 9.15 (fracture) |
QCT400 | 2432.81 | 18.21 |
QT400 | 2720.40 | 14.47 (fracture) |
QCT500 | 2364.12 | 4.21 (fracture) |
QT500 | 2370.81 | 5.99 (fracture) |
QCT600 | 1557.57 | 18.17 |
QT600 | 1574.65 | 14.87 (fracture) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatih, M.R.R.; Chen, H.-J.; Lin, K.-M.; Lin, H.-C. Effect of Tempering Temperature on Carbide Evolution and Mechanical Response of Deep Cryogenically Treated Martensitic Stainless Steel. Metals 2025, 15, 1152. https://doi.org/10.3390/met15101152
Fatih MRR, Chen H-J, Lin K-M, Lin H-C. Effect of Tempering Temperature on Carbide Evolution and Mechanical Response of Deep Cryogenically Treated Martensitic Stainless Steel. Metals. 2025; 15(10):1152. https://doi.org/10.3390/met15101152
Chicago/Turabian StyleFatih, Muhammad Rizqi Ramadhan, Hou-Jen Chen, Kun-Ming Lin, and Hsin-Chih Lin. 2025. "Effect of Tempering Temperature on Carbide Evolution and Mechanical Response of Deep Cryogenically Treated Martensitic Stainless Steel" Metals 15, no. 10: 1152. https://doi.org/10.3390/met15101152
APA StyleFatih, M. R. R., Chen, H.-J., Lin, K.-M., & Lin, H.-C. (2025). Effect of Tempering Temperature on Carbide Evolution and Mechanical Response of Deep Cryogenically Treated Martensitic Stainless Steel. Metals, 15(10), 1152. https://doi.org/10.3390/met15101152