The Effect of Y Content on the Strength and Toughness of Mg-Y-Zn Alloys
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Mechanical Properties of Alloys
3.2. Microstructural Analysis
3.3. Compound Phases in Alloys
3.4. Toughness and Its Influencing Factors
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, M.; Li, Q.; Chen, X.; Li, X.; Chen, P.; Tan, J. Effect of Heat Treatment on Corrosion and Mechanical Properties of Mg-10Y-1.5Zn-0.5Zr Alloy. J. Mater. Eng. Perform. 2023, 32, 1463–1473. [Google Scholar] [CrossRef]
- Su, C.; Wang, J.; Hu, H.; Wen, Y.; Liu, S.; Ma, K. Enhanced strength and corrosion resistant of Mg-Gd-Y-Al alloys by LPSO phases with different Al content. J. Alloy. Compd. 2021, 885, 160557. [Google Scholar] [CrossRef]
- Qin, X.; Liu, H.; Chen, Y.; Sun, C.; Yan, K.; Ju, J.; Jiang, J.; Bai, J.; Xue, F. Significant refinement of 18R-LPSO phase and enhancement of mechanical properties in Mg97Y2Zn1 alloy through an industrially viable processing method. J. Alloy. Compd. 2025, 1024, 180211. [Google Scholar] [CrossRef]
- Padezhnova, E.M.; Melnik, E.V.; Milievskii, R. Investigation of the Mg-Zn-Y system. Russ. Metall. 1982, 4, 185–188. [Google Scholar]
- Luo, S.-Q.; Tang, A.-T.; Pan, F.-S.; Song, K.; Wang, W.-Q. Effect of Mole Ratio of Y to Zn on Phase Constituent of Mg-Zn-Zr-Y Alloys. Trans. Nonferrous Met. Soc. China 2011, 21, 795–800. [Google Scholar] [CrossRef]
- Huang, Z.H.; Liang, S.M.; Chen, R.S.; Han, E.H. Solidification pathways and constituent phases of Mg-Zn-Y-Zr alloys. J. Alloys Compd. 2009, 468, 170–178. [Google Scholar] [CrossRef]
- Xu, D.K.; Han, E.H.; Liu, L.; Xu, Y.B. Influence of higher Zn/Y ratio on the microstructure and mechanical properties of Mg-Zn-Y-Zr alloys. Metall. Mater. Trans. A 2009, 40, 1727–1740. [Google Scholar] [CrossRef]
- Xu, D.K.; Tang, W.N.; Liu, L.; Xu, Y.B.; Han, E.H. Effect of W-phase on the mechanical properties of as-cast Mg-Zn-Y-Zr alloys. J. Alloys Compd. 2008, 461, 248–252. [Google Scholar] [CrossRef]
- Wang, K.; Wang, J.; Huang, S.; Gao, S.; Guo, S.; Liu, S.; Chen, X.; Pan, F. Enhanced mechanical properties of Mg-Gd-Y-Zn-Mn alloy by tailoring the morphology of long-period stacking ordered phase. Mater. Sci. Eng. 2018, A733, 267–275. [Google Scholar] [CrossRef]
- Hagihara, K.; Yamasaki, M.; Kawamura, Y.; Nakano, T. Strengthening of Mg-based long-period stacking ordered (LPSO) phase with deformation kink bands. Mater. Sci. Eng. A 2019, 763, 138163. [Google Scholar] [CrossRef]
- Chen, D.; Li, T.; Sun, Z.; Wang, Q.; Yuan, J.; Ma, M.; Peng, Y.; Zhang, K.; Li, Y. Effects of Bulk LPSO Phases on Mechanical Properties and Fracture Behavior of As-Extruded Mg-Gd-Y-Zn-Zr Alloys. Materials 2023, 16, 7258. [Google Scholar] [CrossRef]
- Hu, J.; Wu, J.; Liu, X.; Zhao, D.; Liang, L.; Peng, J. Influence of Y/Zn Ratio on Secondary Phase Strengthening of Mg-Y-Zn Alloy. Metals 2025, 15, 359. [Google Scholar] [CrossRef]
- Hao, J.; Zhang, J.; Wang, H.; Cheng, W.; Bai, Y. Microstructure and mechanical properties of Mg-Zn-Y-Mn magnesium alloys with different Zn/Y atomic ratio. J. Mater. Res. Technol. 2022, 19, 1650–1657. [Google Scholar] [CrossRef]
- Bazhenov, V.E.; Saidov, S.S.; Tselovalnik, Y.V.; Voropaeva, O.O.; Plisetskaya, I.V.; Tokar, A.A.; Bazlov, A.I.; Bautin, V.A.; Komissarov, A.A.; Koltygin, A.V.; et al. Comparison of castability, mechanical, and corrosion properties of Mg−Zn−Y−Zr alloys containing LPSO and W phases. Trans. Nonferrous Met. Soc. China 2021, 31, 1276–1290. [Google Scholar] [CrossRef]
- Qi, F.-G.; Zhang, D.-F.; Zhang, X.-H.; Pan, F.-S. Effect of Y addition on microstructure and mechanical properties of Mg−Zn−Mn alloy. Trans. Nonferrous Met. Soc. China 2014, 24, 1352–1364. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, X.; Wang, Z.; Le, Q.; Hu, W.; Bao, L.; Cui, J. Effects of phase composition and content on the microstructures and mechanical properties of high strength Mg–Y–Zn–Zr alloys. Mater. Des. 2015, 88, 915–923. [Google Scholar] [CrossRef]
- Bai, Y.; Ye, B.; Guo, J.; Wang, L.; Kong, X.; Ding, W. Mechanical Properties and Yield Asymmetry of Mg-Y-Zn Alloys: Competitive Behavior of Second Phases. Mater. Mater. Charact. 2020, 164, 110301. [Google Scholar] [CrossRef]
- Jin, Q.; Shao, X.; Li, J.; Peng, Z.; Lv, M.; Zhang, B.; Li, Y.; Ma, X. The Role of Melt Cooling Rate on the Interface between 18R and Mg Matrix in Mg97Zn1Y2 Alloys. J. Magnes. Alloy. 2023, 11, 2883–2890. [Google Scholar] [CrossRef]
- Yang, S.; Yang, D.; Dong, W.; Gao, C.; Sheng, D. Microstructure and mechanical properties of spot welding joint of AZ31 magnesium alloy/6061 aluminum alloy. Heat Treat. Met. 2016, 41(12), 29–33. [Google Scholar]
- Li, C.Q.; Xu, D.K.; Zeng, Z.R.; Wang, B.J.; Sheng, L.Y.; Chen, X.B.; Han, E.H. Effect of volume fraction of LPSO phases on corrosion and mechanical properties of Mg-Zn-Y alloys. Mater. Des. 2017, 121, 430–441. [Google Scholar] [CrossRef]
- Tang, Y.; Lia, B.; Tang, H.; Xu, Y.; Gao, Y.; Wang, L.; Guan, J. Effect of long period stacking ordered structure on mechanical and damping properties of as-cast Mg–Zn–Y–Zr alloy. Mater. Sci. Eng. A 2015, 640, 287–294. [Google Scholar] [CrossRef]
- Hagihara, K.; Kinoshita, A.; Sugino, Y.; Yamasaki, M.; Kawamura, Y.; Yasuda, H.Y.; Umakoshi, Y. Effect of long-period stacking ordered phase on mechanical properties of Mg97Zn1Y2 extruded alloy. Acta Mater. 2010, 58, 6282–6293. [Google Scholar] [CrossRef]
- Briffod, F.; Shiraiwa, T.; Enoki, M. The effect of the 18R-LPSO phase on the fatigue behavior of extruded Mg/LPSO two-phase alloy through a comparative experimental-numerical study. J. Magnes. Alloys 2021, 9, 130–143. [Google Scholar] [CrossRef]
- Kim, J.-K.; Sandlöbes, S.; Raabe, D. On the room temperature deformation mechanisms of a Mg-Y-Zn alloy with long-period-stacking-ordered structures. Acta Mater. 2015, 82, 414–423. [Google Scholar] [CrossRef]
- Xu, W.L.; Yu, J.M.; Jia, L.C.; Wu, G.Q.; Zhang, Z.M. Deformation behavior of Mg-13Gd-4Y-2Zn-0.5Zr alloy on the basis of LPSO kinking, dynamic recrystallization and twinning during compression-torsion. Mater. Charact. 2021, 178, 111215. [Google Scholar] [CrossRef]
- Ren, Q.; Yuan, S.; Wang, J.; Ma, D.; Li, W.; Wang, L. Microstructure and High-Temperature Mechanical Properties of Mg-1Al-12Y Alloy Containing LPSO Phase. Metals 2023, 13, 158. [Google Scholar] [CrossRef]
Number | Samples | Y/wt% | Zn/wt% | Y/Zn |
---|---|---|---|---|
1 | 1.50Y-1.15Zn | 2.02 | 1.47 | 1.37 |
2 | 2.50Y-1.92Zn | 2.99 | 2.41 | 1.24 |
3 | 3.50Y-2.69Zn | 3.54 | 2.65 | 1.33 |
4 | 4.50Y-3.46Zn | 4.38 | 3.39 | 1.29 |
5 | 5.50Y-4.23 Zn | 5.54 | 4.67 | 1.18 |
6 | 6.50Y-5Zn | 6.41 | 5.14 | 1.25 |
7 | 8.0Y-6.15Zn | 7.96 | 5.60 | 1.42 |
8 | 9.5Y-7.31Zn | 9.11 | 6.72 | 1.36 |
9 | 11.0Y-8.46Zn | 10.66 | 7.69 | 1.39 |
Number | Alloy | UTS (MPa) | YS (MPa) | EL (%) |
---|---|---|---|---|
1 | 2Y | 151.7 | 92.4 | 5.8 |
2 | 3Y | 158.3 | 112.3 | 4.3 |
3 | 3.5Y | 173.3 | 118.8 | 5.4 |
4 | 4.4Y | 188.9 | 124.4 | 5.9 |
5 | 5.5Y | 183.2 | 130.0 | 4.5 |
6 | 6.4Y | 189.3 | 134.5 | 4.2 |
7 | 8Y | 183.6 | 136.1 | 3.1 |
8 | 9.1Y | 162.4 | 135.5 | 2.0 |
9 | 10.7Y | 163.8 | 132.9 | 1.9 |
Alloy | Position | Element (at%) | Phases | Vol% | Wt% | W/L (Vol) | W/L (Wt) | Y/ Zn | Y/Zn Deviation | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Mg | Y | Zn | |||||||||
2Y | A1 | 91.4 | 5.2 | 4.4 | LPSO | 4.7 | 5.9 | 0.21 | 0.43 | 1.37 | +0.07 |
A2 | 84.9 | 5.5 | 9.6 | W | 1.0 | 2.6 | |||||
A3 | 99.4 | 0.3 | 0.3 | α-Mg | |||||||
3Y | B1 | 87.3 | 6.8 | 5.9 | LPSO | 10.1 | 12.5 | 0.11 | 0.22 | 1.24 | −0.06 |
B2 | 55.5 | 16.6 | 27.9 | W | 1.1 | 2.8 | |||||
B3 | 99.3 | 0.4 | 0.3 | α-Mg | |||||||
3.5Y | C1 | 95.9 | 2.4 | 1.7 | LPSO | 11.7 | 14.3 | 0.14 | 0.28 | 1.33 | +0.03 |
C2 | 76.3 | 10.0 | 13.7 | W | 1.6 | 4.0 | |||||
C3 | 99.1 | 0.6 | 0.3 | α-Mg | |||||||
4.4Y | D1 | 90.4 | 5.4 | 4.2 | LPSO | 19.4 | 23.0 | 0.12 | 0.25 | 1.29 | −0.01 |
D2 | 68 | 11.8 | 20.2 | W | 2.4 | 5.8 | |||||
D3 | 98.7 | 0.6 | 0.7 | α-Mg | |||||||
5.5Y | E1 | 90.4 | 5.4 | 4.2 | LPSO | 19.3 | 22.6 | 0.17 | 0.35 | 1.18 | −0.12 |
E2 | 68 | 11.8 | 20.2 | W | 3.3 | 7.8 | |||||
E3 | 98.7 | 0.6 | 0.7 | α-Mg | |||||||
6.4Y | F1 | 97 | 1.5 | 1.5 | LPSO | 25.9 | 30.1 | 0.09 | 0.19 | 1.25 | −0.05 |
F2 | 85.3 | 6.1 | 8.6 | W | 2.4 | 5.7 | |||||
F3 | 98.3 | 0.9 | 0.8 | α-Mg | |||||||
8Y | G1 | 89.4 | 6.0 | 4.6 | LPSO | 38.2 | 43.2 | 0.05 | 0.11 | 1.42 | +0.12 |
G2 | 62.3 | 15.2 | 22.5 | W | 2.1 | 4.8 | |||||
G3 | 98.3 | 1.0 | 0.7 | α-Mg | |||||||
9.1Y | H1 | 89 | 6.1 | 4.9 | LPSO | 37.9 | 40.5 | 0.17 | 0.34 | 1.36 | +0.06 |
H2 | 64.8 | 13.9 | 21.3 | W | 6.3 | 13.6 | |||||
H3 | 98.3 | 0.9 | 0.8 | α-Mg | |||||||
H4 | 47.5 | 52.3 | 0.2 | Y Rich particles | |||||||
10.7Y | I1 | 89.4 | 5.9 | 4.7 | LPSO | 55.2 | 55.6 | 0.14 | 0.28 | 1.39 | +0.09 |
I2 | 72.6 | 11.2 | 16.2 | W | 7.6 | 15.5 | |||||
I3 | 98.4 | 1.0 | 0.6 | α-Mg | |||||||
I4 | 48.7 | 51.1 | 0.2 | Y Rich particles |
Alloy | Samples | Solid Solution Amount | |||
---|---|---|---|---|---|
/at% | /wt% | ||||
Y | Zn | Y | Zn | ||
2Y | 2.02Y-1.47Zn | 0.3 | 0.3 | 1.1 | 0.8 |
3Y | 2.99Y-2.41Zn | 0.4 | 0.3 | 1.4 | 0.8 |
3.5Y | 3.54Y-2.65Zn | 0.6 | 0.3 | 2.1 | 0.8 |
4.4Y | 4.38Y-3.39Zn | 0.6 | 0.7 | 2.1 | 1.8 |
5.5Y | 5.54Y-4.67Zn | 0.8 | 0.6 | 2.8 | 1.6 |
6.4Y | 6.41Y-5.14Zn | 0.8 | 0.6 | 2.8 | 1.6 |
8Y | 7.96Y-5.60Zn | 1.0 | 0.7 | 3.5 | 1.8 |
9.1Y | 9.11Y-6.72Zn | 0.9 | 0.8 | 3.2 | 2.1 |
10.7Y | 10.66Y-7.69Zn | 0.9 | 0.6 | 3.2 | 1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, D.; Hu, J.; Wang, R.; Yan, G.; Song, W.; Liang, L.; Peng, J. The Effect of Y Content on the Strength and Toughness of Mg-Y-Zn Alloys. Metals 2025, 15, 1134. https://doi.org/10.3390/met15101134
Zhao D, Hu J, Wang R, Yan G, Song W, Liang L, Peng J. The Effect of Y Content on the Strength and Toughness of Mg-Y-Zn Alloys. Metals. 2025; 15(10):1134. https://doi.org/10.3390/met15101134
Chicago/Turabian StyleZhao, Dong, Jie Hu, Ruanyu Wang, Guoqing Yan, Wenkai Song, Liang Liang, and Jian Peng. 2025. "The Effect of Y Content on the Strength and Toughness of Mg-Y-Zn Alloys" Metals 15, no. 10: 1134. https://doi.org/10.3390/met15101134
APA StyleZhao, D., Hu, J., Wang, R., Yan, G., Song, W., Liang, L., & Peng, J. (2025). The Effect of Y Content on the Strength and Toughness of Mg-Y-Zn Alloys. Metals, 15(10), 1134. https://doi.org/10.3390/met15101134