Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (69)

Search Parameters:
Keywords = LPSO phase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6807 KiB  
Article
Enhancing Electrochemical Kinetics and Stability of Biodegradable Mg-Y-Zn Alloys with LPSO Phases via Strategic Micro-Alloying with Ca, Sr, Mn, and Zr
by Lisha Wang, Huiping Wang, Chenchen Zhang, Wei Sun, Yue Wang, Lijuan Wang and Xiaoyan Kang
Crystals 2025, 15(7), 639; https://doi.org/10.3390/cryst15070639 - 11 Jul 2025
Viewed by 261
Abstract
This study systematically investigated the effects of biologically relevant microalloying elements—calcium (Ca), strontium (Sr), manganese (Mn), and zirconium (Zr)—on the electrochemical behavior of Mg-Y-Zn alloys containing long-period stacking ordered (LPSO) phases. The alloys were prepared by casting and characterized using X-ray diffraction (XRD), [...] Read more.
This study systematically investigated the effects of biologically relevant microalloying elements—calcium (Ca), strontium (Sr), manganese (Mn), and zirconium (Zr)—on the electrochemical behavior of Mg-Y-Zn alloys containing long-period stacking ordered (LPSO) phases. The alloys were prepared by casting and characterized using X-ray diffraction (XRD), optical microscopy (OM), and scanning electron microscopy with energy-dispersive spectroscopy (SEM/EDS). Electrochemical properties were assessed through potentiodynamic polarization in Hank’s solution, and corrosion rates were determined by hydrogen evolution and weight loss methods. Microalloying significantly enhanced the corrosion resistance of the base Mg-Y-Zn alloy, with corrosion rates decreasing from 2.67 mm/year (unalloyed) to 1.65 mm/year (Ca), 1.36 mm/year (Sr), 1.18 mm/year (Zr), and 1.02 mm/year (Mn). Ca and Sr additions introduced Mg2Ca and Mg17Sr2, while Mn and Zr refined the existing LPSO structure without new phases. Sr refined the LPSO phase and formed a uniformly distributed Mg17Sr2 network, promoting uniform corrosion and suppressing deep localized attacks. Ca-induced Mg2Ca acted as a temporary sacrificial phase, with corrosion eventually propagating along LPSO interfaces. The Mn-containing alloy exhibited the lowest corrosion rate; this is attributed to the suppression of both anodic and cathodic reaction kinetics and the formation of a stable protective surface film. Zr improved general corrosion resistance but increased susceptibility to localized attacks due to dislocation-rich zones. These findings elucidate the corrosion mechanisms in LPSO-containing Mg alloys and offer an effective strategy to enhance the electrochemical stability of biodegradable Mg-based implants. Full article
(This article belongs to the Special Issue Advances in High-Performance Alloys)
Show Figures

Figure 1

18 pages, 11457 KiB  
Article
Influence of Y/Zn Ratio on Secondary Phase Strengthening of Mg-Y-Zn Alloy
by Jie Hu, Jiageng Wu, Xiangquan Liu, Dong Zhao, Liang Liang and Jian Peng
Metals 2025, 15(4), 359; https://doi.org/10.3390/met15040359 - 24 Mar 2025
Viewed by 334
Abstract
By adjusting the Y/Zn (wt.%) ratio while maintaining the total mass of Y and Zn unchanged, the evolution of the microstructure and mechanical properties of Mg-Y-Zn alloy castings with different phase types was investigated. The results indicated that the studied alloy exhibited a [...] Read more.
By adjusting the Y/Zn (wt.%) ratio while maintaining the total mass of Y and Zn unchanged, the evolution of the microstructure and mechanical properties of Mg-Y-Zn alloy castings with different phase types was investigated. The results indicated that the studied alloy exhibited a typical α-Mg dendritic structure, which contained intermetallic compounds such as phase I, phase I + W, phase W + LPSO, and phase LPSO. The phase evolution process of Mg-Y-Zn alloys was analyzed in conjunction with microstructural observations. The strengthening effects on the mechanical properties of five alloys with different compositions revealed that as the Y/Zn ratio increased, secondary phase strengthening gradually became the primary strengthening mechanism, with the contribution order being W + LPSO > LPSO > I + W > I. Full article
(This article belongs to the Special Issue Novel Insights into Wrought Magnesium Alloys)
Show Figures

Figure 1

17 pages, 10341 KiB  
Article
Unveiling the Strengthening and Ductility Mechanisms of a CoCr0.4NiSi0.3 Medium-Entropy Alloy at Cryogenic Temperatures
by Li Zhang, Lingwei Zhang and Xiang Chen
Crystals 2025, 15(2), 170; https://doi.org/10.3390/cryst15020170 - 10 Feb 2025
Cited by 1 | Viewed by 731
Abstract
Materials utilized in extreme environments, such as those necessitating protection and impact resistance at cryogenic temperatures, must exhibit high strength, ductility, and structural stability. However, most alloys fail to maintain adequate toughness at cryogenic temperatures, thereby compromising their safety during cryogenic temperature service. [...] Read more.
Materials utilized in extreme environments, such as those necessitating protection and impact resistance at cryogenic temperatures, must exhibit high strength, ductility, and structural stability. However, most alloys fail to maintain adequate toughness at cryogenic temperatures, thereby compromising their safety during cryogenic temperature service. This study investigates the quasi-static mechanical properties of a CoCr0.4NiSi0.3 medium-entropy alloy (MEA) at room temperature, −75 °C, and −150 °C. The deformation behavior and mechanisms responsible for strengthening and toughening at reduced cryogenic temperatures are analyzed, revealing that decreasing cryogenic temperature enhances the strength of the as-cast MEA. Specifically, both the yield strength (YS) and ultimate tensile strength (UTS) of the MEA increase significantly with decreasing temperature during cryogenic tensile testing. Under tensile testing at −150 °C, the YS reaches 617.5 MPa, the UTS is 1055.0 MPa, and the elongation to fracture remains approximately 21.0% at both −150 °C and −75 °C. After cryogenic temperature tensile deformation, the matrix exhibits a dispersed distribution of nanoscaled tetragonal and orthorhombic phases, a coherent hexagonal close-packed phase, L12 phase and layered long-period stacking ordered (LPSO) structures, which are rarely observed in the cryogenic deformation of metals and alloys. The metastable phase evolution path of this MEA at cryogenic temperatures is closely associated with the decomposition of perfect dislocations into a/6<112> Shockley partial dislocations and their subsequent evolution at reduced cryogenic temperatures. At −75 °C, the a/6<112> Shockley partial dislocation interacts with the L12 phase to form antiphase boundaries (APBs) approximately 3 nm thick. At −150 °C, two phase transition paths from stacking faults (SFs) to nanotwins and LPSO occur, leading to the formation of layered LPSO structures and deformation-induced nanotwins. The dispersion of these coherent nanophases and nanotwins induced by the reduced stacking fault energy under cryogenic temperatures is the key factor contributing to the excellent balance of strength and plasticity in the as-cast MEA, providing an important basis for research on the cryogenic mechanical properties of CoCrNi-based MEAs. Full article
Show Figures

Figure 1

12 pages, 3272 KiB  
Article
Microstructural Evolution and Thermal Stability of Long Period Stacking Ordered Phases in Mg97Er2Ni1 and Mg97Er2Zn1 Alloys
by Jian Yin, Yushun Liu and Guo-Zhen Zhu
Crystals 2024, 14(12), 1092; https://doi.org/10.3390/cryst14121092 - 19 Dec 2024
Viewed by 945
Abstract
The influence of transition metals (Ni and Zn) on the formation, morphology, and thermal stability of long-period stacking ordered (LPSO) phases in Mg97Er2Ni1 and Mg97Er2Zn1 alloys was investigated. In the as-cast state, both [...] Read more.
The influence of transition metals (Ni and Zn) on the formation, morphology, and thermal stability of long-period stacking ordered (LPSO) phases in Mg97Er2Ni1 and Mg97Er2Zn1 alloys was investigated. In the as-cast state, both alloys consist of α-Mg and LPSO phases. Heat treatment at 540 °C for 20 h dissolves block-like and lamellar LPSO phases into the α-Mg matrix in the Mg97Er2Zn1 alloy, with lamellar LPSO phases reprecipitating during subsequent cooling from 540 °C to 400 °C. Comparative analysis shows that Ni significantly enhances the thermal stability of the LPSO phase compared to Zn. Ni favors the formation of block-shaped LPSO phases, while Zn facilitates lamellar LPSO precipitation within the α-Mg matrix. The LPSO phase in the Mg97Er2Ni1 alloy exhibits an exceptionally high melting temperature of 605 °C, the highest reported for an LPSO phase. Additionally, heat treatment at 500 °C for 100 h preserves the area fraction of the LPSO phase in the Mg97Er2Ni1 alloy, and at 540 °C for 100 h, the LPSO grains grow without phase dissolution or structural transformation of their 18R-type configuration. These findings provide valuable insights into the role of alloying transition metal elements in controlling the stability and morphology of LPSO phases, offering pathways for tailoring the morphology of the LPSO phase in the Mg-based alloys. Full article
Show Figures

Figure 1

11 pages, 10785 KiB  
Communication
Revealing the Interaction Between Dislocations and LPSO-Precipitates Structure in a Mg-Y-Al Alloy at Different Temperatures
by Qingchun Zhu, Yangxin Li, Huan Zhang, Jie Wang, Hongxiang Jiang and Jiuzhou Zhao
Crystals 2024, 14(12), 1018; https://doi.org/10.3390/cryst14121018 - 23 Nov 2024
Cited by 1 | Viewed by 1119
Abstract
Precipitation strengthening represents a crucial strengthening approach in the realm of metals, with particular significance for magnesium. In this study, a complex LPSO–precipitate structure, which is constituted of the principal secondary phases in Mg rare earth (RE) alloys, namely the Long-Period Stacking Ordered [...] Read more.
Precipitation strengthening represents a crucial strengthening approach in the realm of metals, with particular significance for magnesium. In this study, a complex LPSO–precipitate structure, which is constituted of the principal secondary phases in Mg rare earth (RE) alloys, namely the Long-Period Stacking Ordered (LPSO) phase and the aging precipitate, was successfully fabricated within a Mg-11Y-1Al alloy. Subsequently, an in-depth investigation was conducted regarding the interaction between dislocations and this LPSO–precipitate structure under varying temperature conditions. The findings revealed that, at room temperature (RT), the aging precipitates effectively hindered the movement of basal dislocations, and the activation of non-basal dislocations is rather difficult, resulting in the alloy’s high strength and low plasticity. When the temperature was elevated to 200 °C, although non-basal slip could be initiated, the LPSO–precipitate structure was capable of blocking both basal and non-basal slips. Consequently, the alloy still demonstrated high strength and low plasticity. As the temperature further increased to 250 °C, dislocations could cut through the aging precipitate particles, and the interior of the grains could provide partial deformation. Hence, the tensile elongation of the alloy was significantly enhanced, increasing from 4% to 12% as the temperature was elevated from 200 °C to 250 °C. These results suggest that the LPSO–precipitate structure still exerts a remarkable strengthening effect at 200 °C. When the temperature reaches 250 °C, the plasticity of the alloy is improved but its strength decreases. The research outcomes presented in this paper offer a novel perspective for the precise tailoring of mechanical properties through precipitation strengthening within Mg-RE alloys. Full article
(This article belongs to the Special Issue Processing, Structure and Properties of Metal Matrix Composites)
Show Figures

Figure 1

8 pages, 3293 KiB  
Article
Solving Ambiguity in EBSD Indexing of Long-Period Stacking Ordered (LPSO) Phase in Mg with Template Matching Approach
by Yushun Liu, Jian Yin and Guo-zhen Zhu
Crystals 2024, 14(11), 932; https://doi.org/10.3390/cryst14110932 - 28 Oct 2024
Cited by 1 | Viewed by 1136
Abstract
Magnesium (Mg) alloys with long-period stacking ordered (LPSO) phases are receiving increasing interest because of their excellent mechanical performance. The close similarity in atomic stacking sequences between different LPSO polytypes and Mg lattice often leads to ambiguous indexing in electron backscatter diffraction (EBSD), [...] Read more.
Magnesium (Mg) alloys with long-period stacking ordered (LPSO) phases are receiving increasing interest because of their excellent mechanical performance. The close similarity in atomic stacking sequences between different LPSO polytypes and Mg lattice often leads to ambiguous indexing in electron backscatter diffraction (EBSD), a commonly used material characterization technique. Instead of the Hough transformation approach used in commercial software, an alternative indexing approach, which can catch subtle differences by matching experimental patterns with simulated ones, is explored in this study. Our results, showing ~94% of mapping data being correctly indexed as the target phase, 14H LPSO, demonstrate the capability of not only resolving the LPSO phases but also distinguishing different LPSO polytypes. This approach offers a valuable, if not unique, solution for the microscale characterization of LPSO phases, enabling precise microstructure tuning to further promote the mechanical properties of Mg alloys. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

13 pages, 8024 KiB  
Article
The Formation Criteria of LPSO Phase in Type I LPSO Mg-Y-X Alloy from the Perspective of Liquid–Solid Correlation
by Tangpeng Ma, Jin Wang, Jixue Zhou, Jingyu Qin, Kaiming Cheng, Huan Yu, Dongqing Zhao, Huabing Yang, Chengwei Zhan, Guochen Zhao and Xinxin Li
Materials 2024, 17(20), 5032; https://doi.org/10.3390/ma17205032 - 15 Oct 2024
Viewed by 1218
Abstract
The formation criteria of the LPSO phase are important for the design of long-period stacking-ordered (LPSO) Mg alloys. This work focuses on Type I LPSO Mg-Y-X alloys and attempts to explore the formation criteria of the LPSO phase from the perspective of liquid-solid [...] Read more.
The formation criteria of the LPSO phase are important for the design of long-period stacking-ordered (LPSO) Mg alloys. This work focuses on Type I LPSO Mg-Y-X alloys and attempts to explore the formation criteria of the LPSO phase from the perspective of liquid-solid correlation. With the aid of ab-initio molecular dynamics simulation, liquid Mg-Y-X alloys are investigated to obtain the common liquid characteristics from the reported Type I LPSO Mg-Y-X alloys. Following the liquid characteristics, a new Type I LPSO alloy, i.e., Mg-Y-Au, is experimentally confirmed. The discovery of a new Type I LPSO alloy supports liquid–solid correlation, and hence, the formation criteria of the LPSO phase in Type I LPSO alloys can be developed based on the common liquid characteristics of Type I LPSO Mg-Y-X alloys as follows: X should result in the reduction in equilibrium volume and cohesive energy; Y should repulse Y and be attracted by both Mg and X, and X should be repulsed by both Mg and X; X should enhance the threefold and fourfold symmetries and weaken the fivefold and sixfold ones so that the local structural symmetries are distributed close to liquid pure Mg. Full article
(This article belongs to the Special Issue Liquid Structures and Solidification Processes of Metals)
Show Figures

Graphical abstract

19 pages, 10292 KiB  
Article
Annealing Behavior of a Mg-Y-Zn-Al Alloy Processed by Rapidly Solidified Ribbon Consolidation
by Jenő Gubicza, Kristián Máthis, Péter Nagy, Péter Jenei, Zoltán Hegedűs, Andrea Farkas, Jozef Vesely, Shin-ichi Inoue, Daria Drozdenko and Yoshihito Kawamura
Materials 2024, 17(18), 4511; https://doi.org/10.3390/ma17184511 - 13 Sep 2024
Cited by 3 | Viewed by 1265
Abstract
Mg-Y-Zn-Al alloys processed by the rapidly solidified ribbon consolidation (RSRC) technique are candidate materials for structural applications due to their improved mechanical performance. Their outstanding mechanical strength is attributed to solute-enriched stacking faults (SESFs), which can form cluster-arranged layers (CALs) and cluster-arranged nanoplates [...] Read more.
Mg-Y-Zn-Al alloys processed by the rapidly solidified ribbon consolidation (RSRC) technique are candidate materials for structural applications due to their improved mechanical performance. Their outstanding mechanical strength is attributed to solute-enriched stacking faults (SESFs), which can form cluster-arranged layers (CALs) and cluster-arranged nanoplates (CANaPs) or complete the long-period stacking ordered (LPSO) phase. The thermal stability of these solute arrangements strongly influences mechanical performance at elevated temperatures. In this study, an RSRC-processed Mg—0.9%, Zn—2.05%, Y—0.15% Al (at%) alloy was heated at a rate of 0.666 K/s up to 833 K, a temperature very close to melting point. During annealing, in situ X-ray diffraction (XRD) measurements were performed using synchrotron radiation in order to monitor changes in the structure. These in situ XRD experiments were completed with ex situ electron microscopy investigations before and after annealing. At 753 K and above, the ratio of the matrix lattice constants, c/a, decreased considerably, which was restored during cooling. This decrease in c/a could be attributed to partial melting in the volumes with high solute contents, causing a change in the chemical composition of the remaining solid material. In addition, the XRD intensity of the secondary phase increased at the beginning of cooling and then remained unchanged, which was attributed to a long-range ordering of the solute-enriched phase. Both the matrix grains and the solute-enriched particles were coarsened during the heat treatment, as revealed by electron microscopy. Full article
Show Figures

Figure 1

18 pages, 13986 KiB  
Article
Microstructure and Properties of Mg-Gd-Y-Zn-Mn High-Strength Alloy Welded by Friction Stir Welding
by Jinxing Wang, Zhicheng Wan, Xiyu Wang, Jiaxu Wang, Yi Zou, Jingfeng Wang and Fusheng Pan
Materials 2024, 17(17), 4190; https://doi.org/10.3390/ma17174190 - 24 Aug 2024
Viewed by 1433
Abstract
Mg-Gd-Y-Zn-Mn (MVWZ842) is a kind of high rare earth magnesium alloy with high strength, high toughness and multi-scale strengthening mechanisms. After heat treatment, the maximum tensile strength of MVWZ842 alloy is more than 550 MPa, and the elongation is more than 5%. Because [...] Read more.
Mg-Gd-Y-Zn-Mn (MVWZ842) is a kind of high rare earth magnesium alloy with high strength, high toughness and multi-scale strengthening mechanisms. After heat treatment, the maximum tensile strength of MVWZ842 alloy is more than 550 MPa, and the elongation is more than 5%. Because of its great mechanical properties, MVWZ842 has broad application potential in aerospace and rail transit. However, the addition of high rare earth elements makes the deformation resistance of MVWZ842 alloy increase to some extent. This leads to the difficulty of direct plastic processing forming and large structural part shaping. Friction stir welding (FSW) is a convenient fast solid-state joining technology. When FSW is used to weld MVWZ842 alloy, small workpieces can be joined into a large one to avoid the problem that large workpieces are difficult to form. In this work, a high-quality joint of MVWZ842 alloy was achieved by FSW. The microstructure and properties of this high-strength magnesium alloy after friction stir welding were studied. There was a prominent onion ring characteristic in the nugget zone. After the base was welded, the stacking fault structure precipitated in the grain. There were a lot of broken long period stacking order (LPSO) phases on the retreating side of the nugget zone, which brought the effect of precipitation strengthening. Nano-α-Mn and the broken second phase dispersed in the matrix in the nugget zone, which made the grains refine. A relatively complete dynamic recrystallization occurred in the nugget zone, and the grains were refined. The welding coefficient of the welded joint exceeded 95%, and the hardness of the weld nugget zone was higher than that of the base. There were a series of strengthening mechanisms in the joint, mainly fine grain strengthening, second phase strengthening and solid solution strengthening. Full article
(This article belongs to the Special Issue Research on Performance Improvement of Advanced Alloys)
Show Figures

Figure 1

11 pages, 4267 KiB  
Article
Effects of an LPSO Phase Induced by Zn Addition on the High-Temperature Properties of Mg-9Gd-2Nd-(1.5Zn)-0.5Zr Alloy
by Ming Li, Mengling Yao, Liangzhi Liu, Xiaoxia Zhang, Zhihui Xing, Xiangsheng Xia, Peng Liu, Yuanyuan Wan, Qiang Chen and Hongxia Wang
Materials 2024, 17(16), 4075; https://doi.org/10.3390/ma17164075 - 16 Aug 2024
Cited by 1 | Viewed by 930
Abstract
In this study, we prepared Mg-9Gd-2Nd-0.5Zr, referred to as alloy I, and Mg-9Gd-2Nd-1.5Zn-0.5Zr, referred to as alloy II. The effects of a long-period stacking ordered (LPSO) phase induced by Zn addition on the high-temperature mechanical properties and fracture morphology of alloy I and [...] Read more.
In this study, we prepared Mg-9Gd-2Nd-0.5Zr, referred to as alloy I, and Mg-9Gd-2Nd-1.5Zn-0.5Zr, referred to as alloy II. The effects of a long-period stacking ordered (LPSO) phase induced by Zn addition on the high-temperature mechanical properties and fracture morphology of alloy I and alloy II at different temperatures (25 °C, 200 °C, 225 °C, and 250 °C) were studied using optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). The results indicate that Mg5RE at the crystal boundary of the as-cast alloy I transformed into (MgZn)3RE (as-cast alloy II) by the addition of Zn. After solid solution treatment, the secondary phase in alloy I completely disappeared, and there were still residual secondary phases in block-like and needle-like structures in alloy II, while layered LPSO phases precipitated in the matrix. During the high-temperature tensile test, the yield and tensile strength of alloy I decreased significantly with the increase in temperature, while the elongation increased. Compared to alloy I, the yield strength of alloy II with an LPSO phase showed an increasing trend at 25 °C~200 °C and then decreased when the temperature reached around 250 °C. The thermal stability was significantly enhanced, and the elongation was also higher than that of alloy I. As the temperature increased, the fracture surface of alloy I showed increased folding, bending of scratches, and crack enlargement. However, the fracture surface of alloy II remained largely unchanged, with only minor wrinkles and cracks appearing at temperatures reaching 250 °C. Full article
Show Figures

Figure 1

9 pages, 5489 KiB  
Article
High Performance Mg Alloy with Designed Microstructure and Phases
by Zhao Yang, Chao Xu, Shengnan Song, Taiki Nakata and Shigeharu Kamado
Materials 2024, 17(11), 2734; https://doi.org/10.3390/ma17112734 - 4 Jun 2024
Viewed by 1333
Abstract
A high strength and ductile Mg-Gd-Y-Zn-Zr alloy was designed and fabricated. The local strain evolution of the alloys during plastic deformation was analyzed using high-resolution digital image correlation (DIC). The results showed that the β particles, nano-sized γ’ phases, and LPSO phases were [...] Read more.
A high strength and ductile Mg-Gd-Y-Zn-Zr alloy was designed and fabricated. The local strain evolution of the alloys during plastic deformation was analyzed using high-resolution digital image correlation (DIC). The results showed that the β particles, nano-sized γ’ phases, and LPSO phases were distributed in the as-extruded alloy and a bimodal microstructure was exhibited, including elongated un-dynamic recrystallized grains and fine dynamic recrystallized grains. With increasing extrusion ratio, the grain size remained, with the volume fraction of dynamic recrystallization of the as-extruded alloy increasing from 30% to 75%, and the as-extruded alloy exhibited a high strength-ductility synergy, which is attributed to the grain refinement, extensive β particles, and elongated block-shaped LPSO phases. The strain evolution analysis showed that a strain-transfer from un-DRXed regions to adjacent DRXed regions and LPSO phases can promote uniform plastic deformation, which tends to improve the ductility of the alloy. Full article
(This article belongs to the Special Issue Environmentally Friendly Materials)
Show Figures

Figure 1

15 pages, 3971 KiB  
Article
Study of Tensile and Compressive Behavior of ECO-Mg97Gd2Zn1 Alloys Containing Long-Period Stacking Ordered Phase with Lamellar Structure
by Gerardo Garcés, Judit Medina, Pablo Pérez, Rafael Barea, Hyunkyu Lim, Shae K. Kim, Emad Maawad, Norbert Schell and Paloma Adeva
Metals 2024, 14(5), 530; https://doi.org/10.3390/met14050530 - 30 Apr 2024
Cited by 1 | Viewed by 1437
Abstract
A suitable heat treatment in the Mg97Gd2Zn1 (at.%) alloy in the as-cast condition results, after extrusion at high temperature, in a two-phase lamellar microstructure consisting of magnesium grains with thin lamellar shape precipitates and long fibers of the [...] Read more.
A suitable heat treatment in the Mg97Gd2Zn1 (at.%) alloy in the as-cast condition results, after extrusion at high temperature, in a two-phase lamellar microstructure consisting of magnesium grains with thin lamellar shape precipitates and long fibers of the 14H-Long-Period Stacking Ordered (LPSO) phase elongated in the extrusion direction. The magnesium matrix is not fully recrystallized and highly oriented coarse non-dynamically recrystallized (non-DRXed) grains (17% volume fraction) elongated along the extrusion direction remain in the material. The deformation mechanisms of the extruded alloy have been studied measuring the evolution of the internal strains during in situ tension and compression tests using synchrotron diffraction radiation. The data demonstrate that the macroscopic yield stress is governed by the activation of the basal slip system in the randomly oriented equiaxed dynamic recrystallized (DRXed) grains. Non-DRXed grains, due to their strong texture, are favored oriented for the activation of tensile twinning. However, the presence of lamellar-shape precipitates strongly delays the propagation of lenticular thin twins through these highly oriented grains and they have no effect on the onset of the plastic deformation. Therefore, the tension–compression asymmetry is low since the plasticity mechanism is independent of the stress mode. Full article
(This article belongs to the Special Issue Design, Processing and Characterization of Metals and Alloys)
Show Figures

Figure 1

23 pages, 26158 KiB  
Article
Investigation of the Hot Deformation Behavior and Mechanism of a Medium-Entropy CoCr0.4NiSi0.3 Alloy
by Li Zhang, Hui Zhao, Lijia Chen, Feng Li, Weiqiang Zhang, Ge Zhou, Haoyu Zhang and Ningning Geng
Crystals 2024, 14(1), 3; https://doi.org/10.3390/cryst14010003 - 19 Dec 2023
Cited by 3 | Viewed by 1450
Abstract
The CoCrNi-based medium-entropy alloys (MEA) have been extensively investigated due to their exceptional mechanical properties at both room and cryogenic temperatures. To investigate the hot deformation behavior and the recrystallization mechanism of the CoCr0.4NiSi0.3 medium-entropy alloy, a series of deformation [...] Read more.
The CoCrNi-based medium-entropy alloys (MEA) have been extensively investigated due to their exceptional mechanical properties at both room and cryogenic temperatures. To investigate the hot deformation behavior and the recrystallization mechanism of the CoCr0.4NiSi0.3 medium-entropy alloy, a series of deformation tests was conducted using the MMS-100 thermal simulation tester, with deformation conditions of 0.001–1 s−1/850–1150 °C. During the hot deformation process, the flow stress initially increases up to its peak value before gradually decreasing towards a steady state level. Higher flow stress levels are observed with increasing strain rate and decreasing deformation temperature. The estimated activation energy for hot deformation of this alloy is approximately 423.6602 kJ/mol. The Arrhenius-type constitutive equation is utilized to establish a modified model while incorporating power dissipation theory and the instability criterion of a dynamic material model to construct power dissipation maps and instability maps. By superimposing these maps, hot processing maps with strains of 0.4, 0.5, and 0.7 are derived. In this investigation, it is observed that regions of instability exclusively occur when the true strain exceeds 0.4. These regions of instability on the hot processing map align well with experimental findings. The suitable range of parameters for hot-working decreases as the true strain increases. The microstructure was analyzed using electron backscatter diffraction and transmission electron microscopy (TEM) techniques. The volume fraction of dynamic recrystallization (DRX) decreases with increasing strain rate but diminishes with rising temperature. The TEM characterization elucidated the mechanism of DRX in this MEA. The presence of the long-period stacking ordered (LPSO) phase was observed in both the face-centered cubic matrix and hexagonal close-packed recrystallized grains under different deformation conditions. The LPSO phase originates from the matrix at a low strain rate, whereas it is generated during recrystallization at a high strain rate. The observed increase in flow stress of the as-cast MEA is primarily attributed to the synergistic effects arising from the interaction of the dislocation with twins and the second phase. The onset of instability is effectively suppressed within a limited range through the formation of coherent second phases such as L12, LPSO, and superlattice structures resulting from phase transitions. These second phases serve as nucleation sites for recrystallization and contribute to the strengthening of dispersion. Furthermore, their interaction with dislocations and twins significantly influences both flow stress behavior and recrystallization kinetics under hot deformation. These findings not only deepen our understanding of the underlying deformation mechanisms governing MEA but also offer valuable insights for designing CoCrNi-based alloys with improved mechanical properties at elevated temperatures. Full article
(This article belongs to the Special Issue Deformation and Recrystallization Behaviour of Alloys)
Show Figures

Figure 1

14 pages, 12910 KiB  
Article
Study on the Microstructure and Properties of Mg-Gd-Ni-Y Alloy Containing LPSO Phase
by Jibin Zhang, Mingxing Li, Yuming Lai, Lei Wen, Yibo Ai, Xuechong Ren and Weidong Zhang
Metals 2023, 13(12), 1989; https://doi.org/10.3390/met13121989 - 7 Dec 2023
Cited by 2 | Viewed by 1702
Abstract
The long-period stacking ordered (LPSO) structure, functioning as a strengthening phase in magnesium alloys, plays a pivotal role in compensating for inherent performance limitations. In this study, an as-cast Mg-Gd-Ni-Y alloy, including the LPSO phase, was initially obtained through an ingot metallurgy process. [...] Read more.
The long-period stacking ordered (LPSO) structure, functioning as a strengthening phase in magnesium alloys, plays a pivotal role in compensating for inherent performance limitations. In this study, an as-cast Mg-Gd-Ni-Y alloy, including the LPSO phase, was initially obtained through an ingot metallurgy process. Subsequently, the alloy underwent distinct thermal treatments: annealing at 500 °C for 10 h, and extrusion using an extrusion ratio of 10 at a speed of 5 mm/s. Comparative analysis of the microstructure and corrosion characteristics was performed across these three alloy states. Comprising primarily of α-Mg, LPSO phase, and eutectic structures (ES), the alloy exhibited distinctive microstructural features. Immersion experiments conducted in a 3.5% NaCl solution revealed that the as-cast alloy displayed the highest dissolution rate at various temperatures, from room temperature, to 50 °C, and 70 °C. Following annealing, a reduction in the second phase content within the alloy significantly contributed to the observed decrease in its dissolution rate. Extrusion processes resulted in a denser network structure within the microarchitecture, to some extent impeding the spread of corrosion to some extent. By emloying scanning Kelvin probe force microscopy (SKPFM) and micro-electrochemical testing, it was discerned that predominantly the electrochemical system involving α-Mg and the second phases predominantly dictated the heightened dissolution rate of the alloy. This study presents valuable insights into understanding the dissolution mechanisms and potential strategies for controlling the dissolution performance of magnesium alloys containing the LPSO phase. Full article
Show Figures

Figure 1

17 pages, 3655 KiB  
Review
Research Progress on the Damping Mechanism of Magnesium Alloys
by Jinxing Wang, Zhicheng Wan, Cong Dang, Yi Zou, Jingfeng Wang and Fusheng Pan
Materials 2023, 16(23), 7318; https://doi.org/10.3390/ma16237318 - 24 Nov 2023
Cited by 5 | Viewed by 2611
Abstract
Magnesium alloys with high damping, high specific strength and low density have attracted great attention in recent years. However, the application of magnesium alloys is limited by the balance between their mechanical and damping properties. The strength and plasticity of magnesium alloys with [...] Read more.
Magnesium alloys with high damping, high specific strength and low density have attracted great attention in recent years. However, the application of magnesium alloys is limited by the balance between their mechanical and damping properties. The strength and plasticity of magnesium alloys with high damping performance often cannot meet the industrial requirements. Understanding the damping mechanism of magnesium alloys is significant for developing new materials with high damping and mechanical properties. In this paper, the damping mechanisms and internal factors of the damping properties of magnesium alloys are comprehensively reviewed. Some damping mechanisms have been studied by many scholars, and it has been found that they can be used to explain damping performance. Among existing damping mechanisms, the G-L dislocation theory, twin damping mechanism and interface damping mechanism are considered common. In addition, some specific long-period stacking ordered (LPSO) phases’ crystal structures are conducive to dislocation movement, which is good for improving damping performance. Usually, the damping properties of magnesium alloys are affected by some internal factors directly, such as dislocation density, solute atoms, grain texture and boundaries, etc. These internal factors affect damping performance by influencing the dissipation of energy within the crystal. Scholars are working to find novel damping mechanisms and suitable solute atoms that can improve damping performance. It is important to understand the main damping mechanisms and the internal factors for guiding the development of novel high-damping magnesium alloys. Full article
(This article belongs to the Special Issue Review and Feature Papers in "Metals and Alloys" Section)
Show Figures

Figure 1

Back to TopTop