Numerical Modeling of Materials under Extreme Conditions
1. Introduction and Scope
2. Contributions
Acknowledgments
Conflicts of Interest
References
- Zinkle, S.J.; Was, G.S. Materials challenges in nuclear energy. Acta Mater. 2013, 61, 735. [Google Scholar] [CrossRef]
- Rapp, B. Materials for extreme environments. Mater. Today 2006, 9, 6. [Google Scholar] [CrossRef]
- Zinkle, S.J. Fusion materials science: Overview of challenges and recent progress. Phys. Plasmas 2005, 12, 058101. [Google Scholar] [CrossRef]
- Nordlund, K. Historical review of computer simulation of radiation effects in materials. J. Nucl. Mater. 2019, 520, 273. [Google Scholar] [CrossRef]
- Gao, N.; Yao, Z.W.; Lu, G.H.; Deng, H.Q.; Gao, F. Mechanisms for <100> interstitial dislocation loops to diffuse in BCC iron. Nat. Commun. 2021, 12, 225. [Google Scholar] [PubMed]
- Yang, L.; Wirth, B.D. An improved xenon equation of state for nanobubbles in UO2. J. Nucl. Mater. 2022, 572, 154089. [Google Scholar] [CrossRef]
- Germann, T.C.; Holian, B.L.; Lomdahl, P.S.; Ravelo, R. Orientation dependence in molecular dynamics simulations of shocked single crystals. Phys. Rev. Lett. 2000, 84, 5351. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Bertin, N.; Wang, Y.; Bao, Z.; Cai, W. Topological origin of strain induced damage of multi-network elastomers by bond breaking. Extrem. Mech. Lett. 2020, 40, 100883. [Google Scholar] [CrossRef]
- Ouyang, W.; Lai, W.; Li, J.; Liu, J.; Liu, B. Atomic Simulations of U-Mo under Irradiation: A New Angular Dependent Potential. Metals 2021, 11, 1018. [Google Scholar] [CrossRef]
- Zeng, Q.; Liu, Z.; Liang, W.; Ma, M.; Deng, H. A First-Principles Study on Na and O Adsorption Behaviors on Mo (110) Surface. Metals 2021, 11, 1322. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, M.; Liang, W.; Deng, H. A Mechanistic Study of Clustering and Diffusion of Molybdenum and Rhenium Atoms in Liquid Sodium. Metals 2021, 11, 1430. [Google Scholar] [CrossRef]
- Li, L.; Wang, H.; Xu, K.; Li, B.; Jin, S.; Li, X.-C.; Shu, X.; Liang, L.; Lu, G.-H. Atomic Simulations of the Interaction between a Dislocation Loop and Vacancy-Type Defects in Tungsten. Metals 2022, 12, 368. [Google Scholar] [CrossRef]
- Dai, H.; Yu, M.; Dong, Y.; Setyawan, W.; Gao, N.; Wang, X. Effect of Cr and Al on Elastic Constants of FeCrAl Alloys Investigated by Molecular Dynamics Method. Metals 2022, 12, 558. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, M.; Yang, C.; Long, X.; Gao, N.; Yao, Z.; Dong, L.; Wang, X. Effect of Radiation Defects on Thermo–Mechanical Properties of UO2 Investigated by Molecular Dynamics Method. Metals 2022, 12, 761. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, Z.; Wang, L.; Chen, Y.; Liu, Z.; Wang, Q.; Wu, L.; Deng, H. Molecular Dynamics Simulations of Xe Behaviors at the Grain Boundary in UO2. Metals 2022, 12, 763. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Z.; Xia, Y.; Chen, Y.; Liu, Z.; Wang, Q.; Wu, L.; Hu, W.; Deng, H. Effects of Point Defects on the Stable Occupation, Diffusion and Nucleation of Xe and Kr in UO2. Metals 2022, 12, 789. [Google Scholar] [CrossRef]
- Xiao, Z.; Huang, Y.; Liu, Z.; Hu, W.; Wang, Q.; Hu, C. The Role of Grain Boundaries in the Corrosion Process of Fe Surface: Insights from ReaxFF Molecular Dynamic Simulations. Metals 2022, 12, 876. [Google Scholar] [CrossRef]
- Ma, W.; Dong, Y.; Yu, M.; Wang, Z.; Liu, Y.; Gao, N.; Dong, L.; Wang, X. Evolution of Symmetrical Grain Boundaries under External Strain in Iron Investigated by Molecular Dynamics Method. Metals 2022, 12, 1448. [Google Scholar] [CrossRef]
- Lee, M.S.; Jin, C.K.; Suh, J.; Lee, T.; Lim, O.D. Investigation of Collision Toughness and Energy Distribution for Hot Press Forming Center Pillar Applied with Combination Techniques of Patchwork and Partial Softening Using Side Crash Simulation. Metals 2022, 12, 1941. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, J.; Kuang, W.; Jin, M.; Liu, G.; Jin, X.; Shen, Y. Strain Rate Effect on the Thermomechanical Behavior of NiTi Shape Memory Alloys: A Literature Review. Metals 2023, 13, 58. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Gao, N. Numerical Modeling of Materials under Extreme Conditions. Metals 2023, 13, 680. https://doi.org/10.3390/met13040680
Shen Y, Gao N. Numerical Modeling of Materials under Extreme Conditions. Metals. 2023; 13(4):680. https://doi.org/10.3390/met13040680
Chicago/Turabian StyleShen, Yao, and Ning Gao. 2023. "Numerical Modeling of Materials under Extreme Conditions" Metals 13, no. 4: 680. https://doi.org/10.3390/met13040680
APA StyleShen, Y., & Gao, N. (2023). Numerical Modeling of Materials under Extreme Conditions. Metals, 13(4), 680. https://doi.org/10.3390/met13040680