Next Article in Journal
Comparative Study on the Dry Sliding Friction Properties of In-Situ Micron and Submicron (Ti-V)C Reinforced Fe-Based Laser Cladding Layers
Previous Article in Journal
Effects of Travel Speed on the Microstructure and Abrasion Resistance of Hardfacing Alloys Deposited with Composite Powder Particles and Solid Wire
Previous Article in Special Issue
Recovery of Diamond and Cobalt Powder from Polycrystalline Drawing Die Blanks via Ultrasound-Assisted Leaching Process—Part 1: Process Design and Efficiencies
Open AccessArticle

Recovery of Diamond and Cobalt Powders from Polycrystalline Drawing Die Blanks via Ultrasound Assisted Leaching Process—Part 2: Kinetics and Mechanisms

1
Redies Deutschland GmbH & Co.KG, Metzgerstr. 1, 52070 Aachen, Germany
2
IME Process Metallurgy and Metal Recycling, RWTH Aachen University, Intzestrasse 3, 52056 Aachen, Germany
3
Metallurgical and Materials Engineering Department, Istanbul Technical University, Ayazaga Campus, Istanbul 34469, Turkey
*
Author to whom correspondence should be addressed.
Metals 2020, 10(6), 741; https://doi.org/10.3390/met10060741
Received: 30 April 2020 / Revised: 23 May 2020 / Accepted: 26 May 2020 / Published: 3 June 2020
(This article belongs to the Special Issue Advances in Synthesis of Metallic, Oxidic and Composite Powders)
The leaching of industrial polycrystalline diamond (PCD) blanks in aqua regia at atmospheric pressure between 60 °C and 80 °C was performed using an ultrasound to improve the rate of cobalt removal in order to be able to reuse very expensive polycrystalline diamond. Because cobalt (20 wt.%) is used as a solvent catalyst in the production of PCD, its recovery is very important. The cleaned PCD are returned to the production process. Kinetic models were used in the study of cobalt dissolution from polycrystalline diamond blanks by measuring the declining ferromagnetic properties over time. For a better understanding of this leaching process, thermochemical aspects are included in this work. The lowest free Gibbs energy value was obtained with a low solid/liquid ratio and the full use of an ultrasound. A transition from a reaction-controlled to a diffusion-controlled shrinking core model was observed for PCD with a thickness greater than 2.8–3.4 mm. Intermittent ultrasound doubles the reaction rate constant, and the full use of ultrasound provides a 1.5-fold further increase. The obtained maximum activation energy between 60 °C and 80 °C is 20 kJ/mol, for a leaching of diamond blank with grain size of 5 µm. View Full-Text
Keywords: cobalt; aqua regia; polycrystalline diamond blanks; kinetics; thermochemistry cobalt; aqua regia; polycrystalline diamond blanks; kinetics; thermochemistry
Show Figures

Figure 1

MDPI and ACS Style

Kießling, F.; Stopic, S.; Gürmen, S.; Friedrich, B. Recovery of Diamond and Cobalt Powders from Polycrystalline Drawing Die Blanks via Ultrasound Assisted Leaching Process—Part 2: Kinetics and Mechanisms. Metals 2020, 10, 741.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop