Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (121)

Search Parameters:
Keywords = thermochemistry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 3229 KB  
Article
Studies on the Complexation of Platinum(II) by Some 4-Nitroisothiazoles and the Cytotoxic Activity of the Resulting Complexes
by Andrzej Regiec, Joanna Wietrzyk, Magdalena Milczarek, Andrzej Kochel and Henryk Mastalarz
Molecules 2026, 31(1), 34; https://doi.org/10.3390/molecules31010034 - 22 Dec 2025
Viewed by 196
Abstract
Five novel platinum(II) complexes C1C5 were synthesized in the reaction of the appropriate substituted 4-nitroisothiazoles with K2PtCl4 and characterized with elemental analysis, ESI MS spectrometry, NMR spectroscopy, and IR spectroscopy. Also, a new methyl 3-methyl-4-nitroisothiazole-5-carboxylate (L2) [...] Read more.
Five novel platinum(II) complexes C1C5 were synthesized in the reaction of the appropriate substituted 4-nitroisothiazoles with K2PtCl4 and characterized with elemental analysis, ESI MS spectrometry, NMR spectroscopy, and IR spectroscopy. Also, a new methyl 3-methyl-4-nitroisothiazole-5-carboxylate (L2) was obtained. The structures of trans complex C4 and the new isothiazole derivative L2 were additionally confirmed by X-ray diffraction (XRD) method. The cytotoxicity of the investigated complexes was examined in vitro on three human cancer cell lines (MCF-7 breast, ES-2 ovarian, and A549 lung adenocarcinomas) in both normoxic and hypoxic conditions. The tested complexes, except for the most polar cisC5, which appeared to be the least active, showed cytotoxic activity comparable to that of the reference cisplatin. cis-complex C1, transC2, and transC3 showed slightly better cytotoxic activity than cisplatin against the MCF-7 cell line. The complexes had the weakest effect on the A549 cell line. No differences in the cytotoxic activity of the complexes were observed between normoxic and hypoxic conditions, except for the A549 cell line, where all the complexes, except for C2, were inactive in hypoxia. However, most complexes, including the reference cisplatin, were equally toxic to healthy BALB/3T3 cells and cancer cells. The trans complex C2 (isomeric to cisC1) showed even greater toxicity to healthy cells than to MCF-7 and A549 cancer cells. Some complexes were tested for stability against glutathione (GSH) solution to gain additional information that may facilitate the explanation of the pharmacological activity of the tested compounds. Additionally, some theoretical calculations on the thermochemistry of the complexation process were performed using quantum density functional theory (DFT), which indicate that complexation should occur through the coordination of the platinum cation by the nitrogen rather than the sulfur atom of the isothiazole ring. Full article
(This article belongs to the Special Issue Metal-Based Drugs: Past, Present and Future, 3rd Edition)
Show Figures

Graphical abstract

15 pages, 2255 KB  
Article
Photochemical Rearrangements of Pyridine N-Oxides: Pathways to Oxaziridine Derivatives
by Cristian J. Guerra, Yeray A. Rodríguez-Núñez, Efraín Polo-Cuadrado, Mitchell Bacho, Jorge Soto-Delgado, Victor B. Fuentes-Guerrero, Eduardo I. Torres-Olguín, Cristopher A. Fica-Cornejo, Daniela Rodríguez-García, Manuel E. Taborda-Martínez, Leandro Ayarde-Henríquez and Adolfo E. Ensuncho
Molecules 2025, 30(24), 4776; https://doi.org/10.3390/molecules30244776 - 14 Dec 2025
Viewed by 240
Abstract
The photochemical behavior of substituted pyridine N-Oxides is characterized by complex rearrangements culminating in the formation of valuable photoproducts. The CAS(10,8)/cc-pVDZ approach with NEVPT2 corrections is applied to investigate geometric distortions associated with the S1 excited state, conical intersections, and the ultimate [...] Read more.
The photochemical behavior of substituted pyridine N-Oxides is characterized by complex rearrangements culminating in the formation of valuable photoproducts. The CAS(10,8)/cc-pVDZ approach with NEVPT2 corrections is applied to investigate geometric distortions associated with the S1 excited state, conical intersections, and the ultimate transformation of pyridine N-Oxides into oxaziridine-like derivative formations. Our results reveal that the deactivation of the S1 excited state is driven by an out-of-plane rotation of the N-O oxygen atom, resulting in the formation of a lone pair over the nitrogen atom. Along this excited-state reaction pathway, the N-O bond undergoes significant weakening, while a C=C double bond emerges mainly in the excited state. The deactivation at the minimum-energy conical intersection leading to the ground state reveals the formation of an oxaziridine-like intermediate, which subsequently converts into a 1,2-oxazepine derivative. Full article
Show Figures

Graphical abstract

27 pages, 4949 KB  
Article
Mechanistic Evaluation of Radical Scavenging Pathways in Ginger Phenolics: A DFT Study of 6-Gingerol, 6-Shogaol, and 6-Paradol
by Hassane Lgaz, Mouslim Messali and Han-seung Lee
Int. J. Mol. Sci. 2025, 26(22), 11217; https://doi.org/10.3390/ijms262211217 - 20 Nov 2025
Viewed by 562
Abstract
Understanding the molecular determinants of antioxidant activity in natural phenolic compounds is essential for explaining their biological performance and designing new radical scavengers. In this work, the radical-scavenging mechanisms of three major ginger phenolics—6-gingerol (GIN), 6-shogaol (SHO), and 6-paradol (PAR)—were systematically investigated using [...] Read more.
Understanding the molecular determinants of antioxidant activity in natural phenolic compounds is essential for explaining their biological performance and designing new radical scavengers. In this work, the radical-scavenging mechanisms of three major ginger phenolics—6-gingerol (GIN), 6-shogaol (SHO), and 6-paradol (PAR)—were systematically investigated using density functional theory (DFT) thermochemistry at the M06-2X/6-31+G(d,p) level in the gas phase, benzene, and water. Three canonical pathways—hydrogen atom transfer (HAT), single-electron transfer followed by proton transfer (SET–PT), and sequential proton loss–electron transfer (SPLET)—were evaluated through full optimization and frequency calculations at 298.15 K, combined with the SMD solvation model. Frontier molecular orbital (FMO), molecular electrostatic potential (MEP), and quantum theory of atoms in molecules (QTAIM) analyses were employed to correlate electronic structure with reactivity. The results reveal a distinct solvent-dependent mechanistic crossover. In the gas phase and benzene, the low dielectric constant suppresses charge separation, making HAT the thermodynamically dominant pathway. In water, strong stabilization of ionic species lowers both the ionization and deprotonation barriers, allowing SPLET and SET–PT to become competitive or even preferred. Across all media, the phenolic O–H group is the principal reactive site, while the aliphatic O–H of GIN remains inactive. SHO exhibits the most versatile redox profile, combining a highly conjugated α,β-unsaturated chain with favorable charge delocalization; PAR is somewhat less redox-active, while GIN shows intermediate performance governed by intramolecular hydrogen bonding. The assembled thermodynamics for HOO• scavenging confirm that all three phenolics are thermodynamically competent antioxidants (ΔG° ≈ −4 kcal mol−1 in water), with comparable driving forces; electronic descriptors indicate SHO is the most redox-flexible, GIN(phenolic) is moderately and PAR is somewhat less charge-transfer-prone, while GIN(aliphatic) remains inactive. These findings provide a comprehensive structure-to-mechanism correlation for ginger phenolics and establish a predictive framework for solvent-controlled antioxidant behavior in phenolic systems. Full article
Show Figures

Figure 1

15 pages, 10535 KB  
Article
Sodium-Oxide Fluxed Aluminothermic Reduction of Manganese Ore for a Circular Economy: Cr Collector Metal Application
by Theresa Coetsee and Frederik De Bruin
Sustain. Chem. 2025, 6(3), 30; https://doi.org/10.3390/suschem6030030 - 18 Sep 2025
Cited by 1 | Viewed by 979
Abstract
Aluminothermic reduction is gaining renewed interest as an alternative processing route for the circular economy. Aluminium is produced electrochemically in the Hall–Héroult process with minimal CO2 emissions if electricity is sourced from non-fossil fuel energy sources. The Al2O3 product [...] Read more.
Aluminothermic reduction is gaining renewed interest as an alternative processing route for the circular economy. Aluminium is produced electrochemically in the Hall–Héroult process with minimal CO2 emissions if electricity is sourced from non-fossil fuel energy sources. The Al2O3 product from the aluminothermic reduction process can be recycled via hydrometallurgy, with leaching as the first step. NaAlO2 is a water-leachable compound that forms a pathway for recycling Al2O3 with hydrometallurgy. In this work, a suitable slag formulation is applied in the aluminothermic reduction of manganese ore to form a Na2O-based slag of high Al2O3 solubility to effect good alloy–slag separation. The synergistic effect of added chromium metal as a collector metal is illustrated with an increased alloy yield at 68%, from 43% without added Cr. The addition of small amounts of carbon reductant to MnO2-containing ore ensures rapid pre-reduction to MnO. This approach negates the need for a pre-roasting step. The alloy and slag chemical analyses are compared to the thermochemistry-predicted phase chemistry. The alloy consists of 57% Mn, 18% Cr, 18% Fe, 3.4% Si, 1.5% Al, and 2.2% C. The formulated slag exhibits high Al2O3 solubility, enabling effective alloy–slag separation, even at an Al2O3 content of 55%. Full article
Show Figures

Figure 1

21 pages, 2559 KB  
Article
Calix[4]resorcinarene Amide Derivative: Thermodynamics of Cation Complexation Processes and Its Remarkable Properties for the Removal of Calcium (II) from Water
by Angela F. Danil de Namor, Ahmad Jumaa and Nawal Al Hakawati
Int. J. Mol. Sci. 2025, 26(16), 8043; https://doi.org/10.3390/ijms26168043 - 20 Aug 2025
Viewed by 789
Abstract
The state of the art in the thermodynamics of calix[4]resorcinarene derivatives and its metal ion complexes is briefly discussed in the introduction. This is followed by the synthesis and characterization of a recyclable calix[4]resorcinarene amide derivative (L). The 1H NMR analyses in CD3CN [...] Read more.
The state of the art in the thermodynamics of calix[4]resorcinarene derivatives and its metal ion complexes is briefly discussed in the introduction. This is followed by the synthesis and characterization of a recyclable calix[4]resorcinarene amide derivative (L). The 1H NMR analyses in CD3CN and CD3OD showed solvent-dependent conformational changes with a notable downfield chemical shift in the aromatic proton (H-2) in moving from deuterated methanol to acetonitrile, indicating an interaction of the solvent within the ligand cavity as suggested by molecular dynamic simulations. 1H NMR complexation in acetonitrile revealed that L forms relatively strong 1:1 complexes with cations, with selectivity for Ca(II) and, to lesser extent, with Pb(II) over other metal cations. The composition of the complexes is corroborated by conductance measurements. The thermodynamics of these systems indicate that the complexation process is predominantly enthalpy controlled in acetonitrile, while it is entropy controlled in methanol. A remarkable outcome of fundamental studies is found in its application as new material for the removal of Ca(II) from water. The capacity of L to remove Ca(II) from water is 24 mmol/g which exceeds by far the capacity of cation exchange resins. Full article
(This article belongs to the Special Issue Supramolecular Receptors for Cations and Anions)
Show Figures

Figure 1

21 pages, 590 KB  
Article
Empirical Rules in Thermochemistry: Overlooked Overestimations of the Liquid- and Crystal-Phase Heat Capacities of α,ω-Alkanediols and Their Consequences
by Riko Siewert, Vladimir V. Emelyanov, Artemiy A. Samarov, Matthis Richter, Karsten Müller and Sergey P. Verevkin
Liquids 2025, 5(3), 20; https://doi.org/10.3390/liquids5030020 - 13 Aug 2025
Viewed by 982
Abstract
The utilisation of empirical correlations for the estimation of thermodynamic functions is a valuable approach for reducing experimental effort and for validating existing data. Established correlations and group contribution methods provide reliable heat capacity estimates for simple organic compounds. The present work assesses [...] Read more.
The utilisation of empirical correlations for the estimation of thermodynamic functions is a valuable approach for reducing experimental effort and for validating existing data. Established correlations and group contribution methods provide reliable heat capacity estimates for simple organic compounds. The present work assesses the extent of deviations introduced by employing conventional heat capacity correlations for diols. For this purpose, heat capacity differences between the solid, liquid and gas phases are evaluated based on experimentally determined vapour pressures, enthalpies of vaporisation, heat capacities in the solid and liquid phases, and quantum chemical calculations. It is demonstrated that the structural characteristics of diols result in a significant overestimation of heat capacities when conventional empirical methods are applied. Deviations in the range of 30–50 J·K−1·mol−1 were observed when compared to consistent experimental data. As part of the evaluation, new group contribution parameters were developed for calculating heat capacities in the solid and liquid phases. Based on these improved data, inconsistencies in literature values for enthalpies of vaporisation (on the order of 10–15 kJ mol−1) could be resolved. Furthermore, a new correlation was derived that allows for the reliable prediction of enthalpies of vaporisation for α,ω-alkanediols from pentanediol to decanediol. The resulting data provide significant advantages for the design of technical processes involving diols as renewable sources and for the accurate modelling of their phase behaviour. Full article
Show Figures

Figure 1

15 pages, 12959 KB  
Article
Sodium Oxide-Fluxed Aluminothermic Reduction of Manganese Ore with Synergistic Effects of C and Si Reductants: SEM Study and Phase Stability Calculations
by Theresa Coetsee and Frederik De Bruin
Reactions 2025, 6(3), 40; https://doi.org/10.3390/reactions6030040 - 28 Jul 2025
Cited by 1 | Viewed by 974
Abstract
Aluminothermic reduction is an alternative processing route for the circular economy because Al is produced electrochemically in the Hall–Héroult process with minimal CO2 emissions if the electricity input is sourced from non-fossil fuel energy sources. This circular processing option attracts increased research [...] Read more.
Aluminothermic reduction is an alternative processing route for the circular economy because Al is produced electrochemically in the Hall–Héroult process with minimal CO2 emissions if the electricity input is sourced from non-fossil fuel energy sources. This circular processing option attracts increased research attention in the aluminothermic production of manganese and silicon alloys. The Al2O3 product must be recycled through hydrometallurgical processing, with leaching as the first step. Recent work has shown that the NaAlO2 compound is easily leached in water. In this work, a suitable slag formulation is applied in the aluminothermic reduction of manganese ore to form a Na2O-based slag of high Al2O3 solubility to effect good alloy–slag separation. The synergistic effect of carbon and silicon reductants with aluminium is illustrated and compared to the test result with only carbon reductant. The addition of small amounts of carbon reductant to MnO2-containing ore ensures rapid pre-reduction to MnO, facilitating aluminothermic reduction. At 1350 °C, a loosely sintered mass formed when carbon was added alone. The alloy and slag chemical analyses are compared to the thermochemistry predicted phase chemistry. The alloy consists of 66% Mn, 22–28% Fe, 2–9% Si, 0.4–1.4% Al, and 2.2–3.5% C. The higher %Si alloy is formed by adding Si metal. Although the product slag has a higher Al2O3 content (52–55% Al2O3) compared to the target slag (39% Al2O3), the fluidity of the slags appears sufficient for good alloy separation. Full article
Show Figures

Figure 1

20 pages, 29323 KB  
Article
CALPHAD-Assisted Analysis of Fe-Rich Intermetallics and Their Effect on the Mechanical Properties of Al-Fe-Si Sheets via Continuous Casting and Direct Rolling
by Longfei Li, Xiaolong Li, Lei Shi, Shouzhi Huang, Cong Xu, Guangxi Lu and Shaokang Guan
Metals 2025, 15(6), 578; https://doi.org/10.3390/met15060578 - 23 May 2025
Cited by 1 | Viewed by 1042
Abstract
As an eco-efficient short-process manufacturing technique for aluminum alloys, twin-belt continuous casting and direct rolling (TBCCR) demonstrates significant production advantages. In this study, an Al-Fe-Si alloy system with different Fe-rich intermetallics (α-AlFe(Mn)Si and β-AlFe(Mn)Si) via TBCCR was developed for new energy vehicle batteries, [...] Read more.
As an eco-efficient short-process manufacturing technique for aluminum alloys, twin-belt continuous casting and direct rolling (TBCCR) demonstrates significant production advantages. In this study, an Al-Fe-Si alloy system with different Fe-rich intermetallics (α-AlFe(Mn)Si and β-AlFe(Mn)Si) via TBCCR was developed for new energy vehicle batteries, utilizing the Computer Coupling of Phase Diagrams and Thermochemistry (CALPHAD) technique. Comprehensive microstructure and surface segregation analyses of continuous casted ingots and direct-rolled sheets revealed that the Al-Fe-Si alloy with a combined Fe + Si content of 0.7% and an optimal Fe/Si atomic ratio of 3:1 (FS31) presents optimized mechanical properties: ultimate tensile strength of 145.8 MPa, elongation to failure of 5.7%, accompanied by a cupping value of 6.64 mm. Notably, Mn addition further refined the grain structure of casting ingots and enhanced the strength of both ingots and rolled sheets. Among the experimental alloys, FS14 (optimal Fe/Si atomic ratio of 1:4) sheets displayed the least surface segregation upon Mn incorporation. Through systematic optimization, an Al-Fe-Si-Mn alloy composition (Fe + Si = 0.7%, Fe/Si = 1:4 atomic ratio, 0.8 wt.% Mn) was engineered for TBCCR processing, achieving enhanced comprehensive performance: ultimate tensile strength of 189.4 MPa, elongation to failure of 7.32%, and cupping value of 7.71 mm. This composition achieves an optimal balance between grain refinement, mechanical properties (strength–plasticity synergy), formability (cupping value), and corrosion resistance (corrosion current density). The performance optimization strategy integrates synergistic improvements in strength, ductility, and corrosion resistance, providing valuable guidance for developing high-performance aluminum alloys suitable for the TBCCR process. Full article
(This article belongs to the Special Issue Thermodynamics and Kinetics Analysis of Metallic Material)
Show Figures

Figure 1

19 pages, 1713 KB  
Article
Quantum Chemical Studies on the Prototropic and Acid/Base Equilibria for 2-Aminopyrrole in Vacuo—Role of CH Tautomers in the Design of Strong Brønsted Imino N-Bases
by Ewa Daniela Raczyńska, Pierre-Charles Maria and Jean-François Gal
Molecules 2025, 30(10), 2112; https://doi.org/10.3390/molecules30102112 - 9 May 2025
Cited by 1 | Viewed by 1308
Abstract
In the quest of the pivotal origin of the very strong gas-phase proton basicity for some iminopyrrole derivatives, proposed in the literature on the basis of quantum chemical calculations, the full tautomeric and acid/base equilibria were investigated in vacuo for 2-aminopyrrole exhibiting enamino–imino [...] Read more.
In the quest of the pivotal origin of the very strong gas-phase proton basicity for some iminopyrrole derivatives, proposed in the literature on the basis of quantum chemical calculations, the full tautomeric and acid/base equilibria were investigated in vacuo for 2-aminopyrrole exhibiting enamino–imino tautomerism. Thermochemistry of these processes investigated at the Density Functional Theory (DFT) level indicates a lower stability for the imino than for the enamino tautomers. However, the imino N atom in the imino forms displays an exceptionally high basicity, particularly in the minor and rare tautomers containing at least one tautomeric proton at the pyrrole C atom. This explains why derivatives of CH tautomers (being free of prototropy) display exceptionally high gas-phase proton basicity. As predicted by the Maksić group using quantum chemical methods, these derivatives can be considered as good organic imino N-superbase candidates. Unfortunately, some other structures of iminopyrrole derivatives (proposed by the same group) possess labile protons, and, thus, exhibit prototropy, resulting in the transformation into the more stable but less basic aminopyrrole derivatives under synthesis conditions or acid/base equilibria measurements. Full article
(This article belongs to the Special Issue Quantum Chemical Calculations of Molecular Reaction Processes)
Show Figures

Figure 1

18 pages, 26463 KB  
Article
Combustion Characteristics and Thermochemistry of Selected Silicon-Based Compositions for Time-Delay Detonators
by Marcin Gerlich, Waldemar A. Trzciński and Marcin Hara
Materials 2025, 18(7), 1456; https://doi.org/10.3390/ma18071456 - 25 Mar 2025
Cited by 3 | Viewed by 971
Abstract
This study investigates the combustion characteristics of silicon-based time-delay compositions with bismuth(III) oxide (Bi2O3), antimony(III) oxide (Sb2O3), and lead(II,IV) oxide (Pb3O4) to identify formulations with pressure-independent burn rates. Unlike conventional pyrotechnic [...] Read more.
This study investigates the combustion characteristics of silicon-based time-delay compositions with bismuth(III) oxide (Bi2O3), antimony(III) oxide (Sb2O3), and lead(II,IV) oxide (Pb3O4) to identify formulations with pressure-independent burn rates. Unlike conventional pyrotechnic compositions, silicon-based mixtures offer an improved energy density and reduced sensitivity to pressure variations. The linear combustion rate of the compositions was determined for a wide range of silicon contents and for different compaction pressures. Experimental results show that burn rates range from 8 mm s⁻1 to 195 mm s⁻1, depending on the metal oxide type and silicon content. The highest rate (195 mm s⁻1) was observed for Si/Pb3O4 at 30 wt.% silicon, while Si/Sb2O3 had the lowest (10 ÷ 35 mm s⁻1). The calorimetric heat of combustion varied between 1200 J g⁻1 and 1400 J g⁻1, with adiabatic combustion temperatures reaching 2200 K, calculated from this heat. DTA and XRD confirmed the condensed-phase combustion, forming reduced metal phases and silicon oxides. SEM and EDS revealed a porous residue structure. This work introduces a novel approach to time-delay compositions using silicon as a primary fuel. It shows that specific silicon oxide–metal systems maintain stable combustion for different loading pressures and advance pyrotechnic formulations for safer and more efficient industrial and defense applications. Full article
Show Figures

Figure 1

16 pages, 7246 KB  
Article
Thermodynamic Properties of γ- and δ-Lactones: Exploring Alkyl Chain Length Effect and Ring-Opening Reactions for Green Chemistry Applications
by Ana L. R. Silva, Gastón P. León, Vladimír Lukeš, Erik Klein and Maria D. M. C. Ribeiro da Silva
Molecules 2025, 30(2), 399; https://doi.org/10.3390/molecules30020399 - 18 Jan 2025
Cited by 2 | Viewed by 1950
Abstract
An extensive thermochemical study of γ-undecanolactone and δ-undecanolactone has been developed using two complementary calorimetric techniques. The combustion energy of each compound was determined by static-bomb combustion calorimetry, and the corresponding enthalpy of vaporization was determined by high-temperature Calvet microcalorimetry, in which both [...] Read more.
An extensive thermochemical study of γ-undecanolactone and δ-undecanolactone has been developed using two complementary calorimetric techniques. The combustion energy of each compound was determined by static-bomb combustion calorimetry, and the corresponding enthalpy of vaporization was determined by high-temperature Calvet microcalorimetry, in which both properties of each compound are reported at T = 298.15 K. The standard molar enthalpy of formation in the gas phase of each lactone was derived by the combination of the experimental results. Additionally, high-level computational calculations were carried out, using composite ab initio G4 and G4(MP2) methods, as well as DFT M06-2X/6-311++G(d,p) approach, to estimate the corresponding enthalpy of formation in the gas phase. The experimental and computational results are in good agreement. The G4 and G4(MP2) methods show the best accordance with experimentally determined gas phase enthalpies of formation. The experimental results are discussed in terms of structural contributions to the energetic properties of the lactones studied, as well as to other alkylated γ- and δ-lactones, and empirical correlations are suggested for the estimation of the standard molar enthalpies of formation, at T = 298.15 K, for other alkylated γ- and δ-lactones, both in the liquid and gaseous phases, as well as for the respective enthalpies of vaporization. Finally, the thermochemistry of individual steps of lactone ring opening and successive decarboxylation mechanism, including the identification of transition states, was studied using the M06-2X/6-311++G(d,p) approach. Full article
(This article belongs to the Special Issue Thermodynamics of Organic Materials)
Show Figures

Figure 1

40 pages, 1375 KB  
Review
Application of Thermodynamic Methods to the Study of Plant Biomass and Its Components—A Review
by Ioelovich Michael
Appl. Biosci. 2024, 3(4), 577-616; https://doi.org/10.3390/applbiosci3040036 - 23 Dec 2024
Cited by 1 | Viewed by 2890
Abstract
This article describes the basics of chemical thermodynamics and its application to the study of plant biomass and its main components, cellulose, hemicelluloses, lignin, etc. The energy potential of various biomass types, as well as biomass-based solid, liquid, and gaseous biofuels, is determined. [...] Read more.
This article describes the basics of chemical thermodynamics and its application to the study of plant biomass and its main components, cellulose, hemicelluloses, lignin, etc. The energy potential of various biomass types, as well as biomass-based solid, liquid, and gaseous biofuels, is determined. A method of additive contributions of combustion enthalpies of main components is proposed to calculate the combustion enthalpy of biomass samples. It is also established that the potential of thermal energy of the initial biomass is higher than the energy potential of secondary biofuels released from this biomass. The thermodynamic functions of plant biopolymers are calculated. Moreover, the thermodynamic stability of various crystalline allomorphs of cellulose and amorphous cellulose is studied. The melting enthalpies of crystallites with different types of crystalline structures are estimated. A thermochemical method for determining the degree of crystallinity of cellulose is proposed. The most important biomass components are cellulose and other polysaccharides. The thermodynamics of the enzymatic hydrolysis of polysaccharides and their conversion into glucose are described. In addition, the thermodynamic analysis of the conversion process of glucose into bioethanol is performed. Considerable attention is also paid to the thermochemistry of cellulose alkalization, etherification, and esterification. Full article
(This article belongs to the Special Issue Feature Papers in Applied Biosciences 2024)
Show Figures

Figure 1

19 pages, 5129 KB  
Article
Computational Thermochemistry for Modelling Oxidation During the Conveyance Tube Manufacturing Process
by Megan Kendall, Mark Coleman, Hollie Cockings, Elizabeth Sackett, Chris Owen and Michael Auinger
Metals 2024, 14(12), 1402; https://doi.org/10.3390/met14121402 - 7 Dec 2024
Cited by 1 | Viewed by 1812
Abstract
Conveyance tube manufacturing via a hot-finished, welded route is an energy-intensive process which promotes rapid surface oxidation. During normalisation at approximately 950 °C to homogenise the post-weld microstructure, an oxide mill scale layer grows on tube outer surfaces. Following further thermomechanical processing, there [...] Read more.
Conveyance tube manufacturing via a hot-finished, welded route is an energy-intensive process which promotes rapid surface oxidation. During normalisation at approximately 950 °C to homogenise the post-weld microstructure, an oxide mill scale layer grows on tube outer surfaces. Following further thermomechanical processing, there is significant yield loss of up to 3% of total feedstock due to scale products, and surface degradation due to inconsistent scale delamination. Delaminated scale is also liable to contaminate and damage plant tooling. The computational thermochemistry software, Thermo-Calc 2023b, with its diffusion module, DICTRA, was explored for its potential to investigate oxidation kinetics on curved geometries representative of those in conveyance tube applications. A suitable model was developed using the Stefan problem, bespoke thermochemical databases, and a numerical solution to the diffusion equation. Oxide thickness predictions for representative curved surfaces revealed the significance of the radial term in the diffusion equation for tubes of less than a 200 mm inner radius. This critical value places the conveyance tubes’ dimensions well within the range where the effects of a cylindrical coordinate system on oxidation, owing to continuous surface area changes and superimposed diffusion pathways, cannot be neglected if oxidation on curved surfaces is to be fully understood. Full article
(This article belongs to the Special Issue Manufacturing Processes of Metallic Materials)
Show Figures

Figure 1

14 pages, 3398 KB  
Article
CFD and Artificial Intelligence-Based Machine Learning Synergy for the Assessment of Syngas-Utilizing Pre-Reformer in r-SOC Technology Advancement
by Murphy M. Peksen
Appl. Sci. 2024, 14(22), 10181; https://doi.org/10.3390/app142210181 - 6 Nov 2024
Cited by 2 | Viewed by 2153
Abstract
This study demonstrates the significant advantages of integrating computational fluid dynamics (CFD) with artificial intelligence (AI)-based machine learning (ML) to optimize the pre-reforming process for reversible solid oxide cell (r-SOC) technologies. It places a distinct focus on the relationship between process variables, aiming [...] Read more.
This study demonstrates the significant advantages of integrating computational fluid dynamics (CFD) with artificial intelligence (AI)-based machine learning (ML) to optimize the pre-reforming process for reversible solid oxide cell (r-SOC) technologies. It places a distinct focus on the relationship between process variables, aiming to enhance the preparation of quality r-SOC-ready fuel, which is an indispensable element for successful operation. Evaluating the intricate thermochemistry of syngas-containing reforming processes involves employing an experimentally validated CFD model. The model serves as the foundation for gathering essential data, crucial for the development and training of AI-based machine learning models. The developed model forecasts and optimizes reforming processes across diverse fuel compositions, encompassing oxygen-containing syngas blends and controlled feedstock outlet process conditions. Impressively, the model’s predictions align closely with CFD outcomes with an error margin as low as 0.34%, underscoring its accuracy and reliability. This research significantly contributes to a deeper understanding and the qualitative enhancement of preparing high-quality syngas for SOC under improved process conditions. Enabling the early availability of valuable information drives forward sustainable research and ensures the safe, consistent operation assessment of r-SOC. Additionally, this strategic approach substantially reduces the need for resource-intensive experiments. Full article
(This article belongs to the Special Issue Artificial Intelligence (AI) for Energy Systems)
Show Figures

Figure 1

62 pages, 16931 KB  
Article
Simulation-Based Design for Recycling of Car Electronic Modules as a Function of Disassembly Strategies
by Antoinette van Schaik and Markus A. Reuter
Sustainability 2024, 16(20), 9048; https://doi.org/10.3390/su16209048 - 18 Oct 2024
Cited by 5 | Viewed by 3485
Abstract
Modules (or parts) of a car are a complex functional material combination used to deliver a specified task for a car. Recovering all materials, energy, etc., into high-grade materials at their end of life (EoL) is impossible. This is dictated by the second [...] Read more.
Modules (or parts) of a car are a complex functional material combination used to deliver a specified task for a car. Recovering all materials, energy, etc., into high-grade materials at their end of life (EoL) is impossible. This is dictated by the second law of thermodynamics (2LT) and thence economics. Thus, recyclability cannot be conducted with simplistic mass-based approaches void of thermodynamic considerations. We apply, in this paper, a process simulation model to estimate the true recyclability of various SEAT (Volkswagen Group) car parts within the EU H2020 TREASURE project. This simulation model is developed with 190 reactors and over 310 feed components with over 1000 reaction species in the 880 streams of the flowsheet. The uniqueness of the work in this paper is to apply the full material declaration (FMD) and bill of materials (BOM) of all 310 materials in the parts as a feed to the process simulation model to show the parts’ true recyclability. We classified all parts into categories, i.e., copper-rich, steel-rich and plastic-rich, to maximally recover metals at the desired material quality, as well as energy. Recyclability is understood to create high-grade products that can be applied with the same functional quality in these parts. In addition, disassembly strategies and related possible redesign show how much recyclability can be improved. Process simulation permits the creation of alloys, phases, materials, etc., at a desired quality. The strength of the simulation permits any feed from any End-of-Life part to be analyzed, as long as the FMD and BOM are available. This is analogous to any mineral and metallurgical engineering process simulation for which the full mineralogy must be available to analyze and/or design flowsheets. This paper delivers a wealth of data for various parts as well as the ultimate recovery of materials, elements, and energy. The results show clearly that there is no one single recycling rate for elements, materials, and alloys. It is in fact a function of the complexity and material combinations within the parts. The fact that we use a thermochemical-based process simulator with full compositional detail for the considered parts means full energy balances as well as exergy dissipation can be evaluated. This means that we can also evaluate which parts, due complex mixtures of plastics, are best processed for energy recovery or are best for material and metal recovery, with thermochemistry, reactor technology and integrated flowsheets being the basis. Full article
Show Figures

Figure 1

Back to TopTop