Countermovement Jump Inter-Limb Asymmetries in Collegiate Basketball Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Design
2.3. Procedures
2.3.2. Countermovement Jump with an Arm Swing (CMJ AS)
2.3.3. Countermovement Jump with No Arm Swing (CMJ NAS)
2.3.4. Inter-Limb Asymmetry Calculation
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bell, D.R.; Sanfilippo, J.L.; Binkley, N.; Heiderscheit, B.C. Lean mass asymmetry influences force and power asymmetry during jumping in collegiate athletes. J. Strength Cond. Res. 2014, 28, 884–891. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.R.; Ratamess, N.A.; Klatt, M.; Faigenbaum, A.D.; Kang, J. Do bilateral power deficits influence direction-specific movement patterns? Res. Sport. Med. 2007, 15, 125–132. [Google Scholar] [CrossRef]
- Bishop, C.; Read, P.; McCubbine, J.; Turner, A. Vertical and Horizontal Asymmetries are Related to Slower Sprinting and Jump Performance in Elite Youth Female Soccer Players. J. Strength Cond. Res. 2018. [Google Scholar] [CrossRef]
- Maulder, P.; Cronin, J. Horizontal and vertical jump assessment: Reliability, symmetry, discriminative and predictive ability. Phys. Ther. Sport 2005, 6, 74–82. [Google Scholar] [CrossRef]
- Plisky, P.J.; Rauh, M.J.; Kaminski, T.W.; Underwood, F.B. Star Excursion Balance Test as a Predictor of Lower Extremity Injury in High School Basketball Players. J. Orthop. Sport. Phys. Ther. 2006, 36, 911–919. [Google Scholar] [CrossRef] [Green Version]
- Knapik, J.J.; Bauman, C.L.; Jones, B.H.; Harris, J.M.; Vaughan, L. Preseason strength and flexibility imbalances associated with athletic injuries in female collegiate athletes. Am. J. Sports Med. 2006, 19, 76–81. [Google Scholar] [CrossRef]
- Kyritsis, P.; Bahr, R.; Landreau, P.; Miladi, R.; Witvrouw, E. Likelihood of ACL graft rupture: Not meeting six clinical discharge criteria before return to sport is associated with a four times greater risk of rupture. Br. J. Sports Med. 2016, 50, 946–951. [Google Scholar] [CrossRef]
- Rohman, E.; Steubs, J.T.; Tompkins, M. Changes in involved and uninvolved limb function during rehabilitation after anterior cruciate ligament reconstruction: Implications for Limb Symmetry Index measures. Am. J. Sports Med. 2015, 43, 1391–1398. [Google Scholar] [CrossRef]
- Davies, G.J.; McCarty, E.; Provencher, M.; Manske, R.C. ACL Return to Sport Guidelines and Criteria. Curr. Rev. Musculoskelet. Med. 2017, 10, 307–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, C.; Turner, A.; Jarvis, P.; Chavda, S.; Read, P. Considerations for Selecting Field-Based Strength and Power Fitness Tests to Measure Asymmetries. J. Strength Cond. Res. 2017, 31, 2635–2644. [Google Scholar] [CrossRef]
- Bishop, C.; Turner, A.; Read, P. Effects of inter-limb asymmetries on physical and sports performance: A systematic review. J. Sports Sci. 2018, 36, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
- Impellizzeri, F.M.; Rampinini, E.; Maffiuletti, N.; Marcora, S.M. A vertical jump force test for assessing bilateral strength asymmetry in athletes. Med. Sci. Sports Exerc. 2007, 39, 2044–2050. [Google Scholar] [CrossRef] [PubMed]
- Menzel, H.-J.; Chagas, M.H.; Szmuchrowski, L.A.; Araujo, S.R.S.; de Andrade, A.G.P.; de Jesus-Moraleida, F.R. Analysis of lower limb asymmetries by isokinetic and vertical jump tests in soccer players. J. Strength Cond. Res. 2013, 27, 1370–1377. [Google Scholar] [CrossRef]
- Bishop, C.; Lake, J.; Loturco, I.; Papadopoulos, K.; Turner, A.; Read, P. Interlimb Asymmetries: The Need For an Individual Approach to Data Analysis. J. Strength Cond. Res. 2018. [Google Scholar] [CrossRef]
- Komi, P.V. Stretch-shortening cycle: A powerful model to study normal and fatigued muscle. J. Biomech. 2000, 33, 1197–1206. [Google Scholar] [CrossRef]
- Benjanuvatra, N.; Lay, B.S.; Alderson, J.A.; Blanksby, B.A. Comparison of Ground Reaction Force Asymmetry in One- and Two-legged Countermovement Jumps. J. Strength Cond. Res. 2013, 27, 2700–2707. [Google Scholar] [CrossRef]
- Heishman, A.; Curtis, M.; Saliba, E.; Hornett, R.; Malin, S.; Weltman, A. Non-Invasive Assessment of Internal and External Player Load. J. Strength Cond. Res. 2018. [Google Scholar] [CrossRef]
- Cormack, S.J.; Newton, R.U.; McGulgan, M.R.; Doyle, T.L.A. Reliability of measures obtained during single and repeated countermovement jumps. Int. J. Sports Physiol. Perform. 2008, 3, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Gathercole, R.; Sporer, B.; Stellingwerff, T.; Sleivert, G. Alternative countermovement-jump analysis to quantify acute neuromuscular fatigue. Int. J. Sports Physiol. Perform. 2015, 10, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Gathercole, R.; Sporer, B.; Stellingwerff, T. Countermovement Jump Performance with Increased Training Loads in Elite Female Rugby Athletes. Int. J. Sports Med. 2015, 36, 722–728. [Google Scholar] [CrossRef]
- Heishman, A.D.; Daub, B.D.; Miller, R.M.; Freitas, E.D.S.; Frantz, B.A.; Bemben, M.G. Countermovement Jump Reliability Performed with and without an Arm Swing in NCAA Division 1 Intercollegiate Basketball Players. J. Strength Cond. Res. 2018. [Google Scholar] [CrossRef]
- Gathercole, R.J.; Sporer, B.C.; Stellingwerff, T.; Sleivert, G.G. Comparison of the capacity of different jump and sprint field tests to detect neuromuscular fatigue. J. Strength Cond. Res. 2015, 29, 2522–2531. [Google Scholar] [CrossRef] [PubMed]
- Laffaye, G.; Bardy, B.; Taiar, R. Upper-limb motion and drop jump: Effect of expertise. J. Sports Med. Phys. Fitness 2006, 46, 238–247. [Google Scholar]
- Newton, R.U.; Gerber, A.; Nimphius, S.; Shim, J.K.; Doan, B.K.; Robertson, M.; Pearson, D.R.; Craig, B.W.; Häkkinen, K.; Kraemer, W.J. Determination of functional strength imbalance of the lower extremities. J. Strength Cond. Res. 2006, 20, 971–977. [Google Scholar] [CrossRef]
- Martinez, D.B. The use of Reactive Strength Index, Reactive Strength Index Modified, and flight time:contraction time as monitoring tools. J. Aust. Strength Cond. 2016, 24, 37–41. [Google Scholar]
- Heishman, A.D.; Curtis, M.A.; Saliba, E.N.; Hornett, R.J.; Malin, S.K.; Weltman, A.L. Comparing performance during morning vs. afternoon training sessions in intercollediate basketball players. J. Strength Cond. Res. 2017, 31, 1557–1562. [Google Scholar] [CrossRef]
- Linthorne, N.P. Analysis of standing vertical jumps using a force platform. Am. J. Phys. 2001, 69, 1198–1204. [Google Scholar] [CrossRef] [Green Version]
- Bishop, C.; Read, P.; Chavda, S.; Turner, A. Asymmetries of the Lower Limb: The Calculation Conundrum in Strength Training and Conditioning. Strength Cond. J. 2016, 38, 27–32. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumgartner, T.A.; Chung, H. Confidence limits for intraclass reliability coefficients. Meas. Phys. Educ. Exerc. Sci. 2001, 5, 179–188. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Tavakol, M.; Dennick, R. Making sense of Cronbach’s alpha. Int. J. Med. Educ. 2011, 2, 53–55. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Lake, J.P.; Mundy, P.D.; Comfort, P.; Suchomel, T.J. Do the peak and mean force methods of assessing vertical jump force asymmetry agree? Sport. Biomech. 2018, 91, 1–8. [Google Scholar] [CrossRef] [PubMed]
- LaStayo, P.C.; Woolf, J.M.; Lewek, M.D.; Snyder-Mackler, L.; Reich, T.; Lindstedt, S.L. Eccentric muscle contractions: Their contribution to injury, prevention, rehabilitation, and sport. J. Orthop. Sports Phys. Ther. 2003, 33, 557–571. [Google Scholar] [CrossRef]
- Opar, D.A.; Williams, M.D.; Timmins, R.G.; Hickey, J.; Duhig, S.J.; Shield, A.J. Eccentric hamstring strength and hamstring injury risk in Australian footballers. Med. Sci. Sports Exerc. 2015, 47, 857–865. [Google Scholar] [CrossRef] [PubMed]
- Hopper, D.M.; Goh, S.C.; Wentworth, L.A.; Chan, D.Y.; Chau, J.H.; Wootton, G.J.; Strauss, G.R.; Boyle, J.J. Test–retest reliability of knee rating scales and functional hop tests one year following anterior cruciate ligament reconstruction. Phys. Ther. Sport 2002, 3, 10–18. [Google Scholar] [CrossRef]
- McElveen, M.T.; Riemann, B.L.; Davies, G.J. Bilateral comparison of propulsion mechanics during single-leg vertical jumping. J. Strength Cond. Res. 2010, 24, 375–381. [Google Scholar] [CrossRef]
- Augustsson, J.; Thomeé, R.; Lindén, C.; Folkesson, M.; Tranberg, R.; Karlsson, J. Single-leg hop testing following fatiguing exercise: Reliability and biomechanical analysis. Scand. J. Med. Sci. Sports 2006, 16, 111–120. [Google Scholar] [CrossRef]
- Hori, N.; Newton, R.U.; Kawamori, N.; McGuigan, M.R.; Kraemer, W.J.; Nosaka, K. Reliability of performance measurements derived from ground reaction force data during countermovement jump and the influence of sampling frequency. J. Strength Cond. Res. 2009, 23, 874–882. [Google Scholar] [CrossRef]
- Mclellan, C.P.; Lovell, D.I.; Gass, G.C. The role of rate of force development on vertical jump performance. J. Strength Cond. Res. 2011, 25, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Vaverka, F.; Jandačka, D.; Zahradník, D.; Uchytil, J.; Farana, R.; Supej, M.; Vodičar, J. Effect of an Arm Swing on Countermovement Vertical Jump Performance in Elite Volleyball Players: FINAL. J. Hum. Kinet. 2016, 53, 41–50. [Google Scholar] [CrossRef] [PubMed]
Variable | Abbreviation | Definition |
---|---|---|
Concentric Impulse (Ns) | ConcImp | Concentric force exerted multiplied by time taken |
Concentric Impulse 50ms (Ns) | ConcImp-50 | Total net impulse over first 50-ms epoch of the concentric phase |
Concentric Impulse 100ms (Ns) | ConcImp-100 | Total net impulse over first 100-ms epoch of the concentric phase |
Concentric Mean Force (N) | ConcMF | Mean force during the concentric phase |
Concentric Peak Force (N) | ConcPF | Peak force over the concentric phase |
Eccentric Braking RFD (N/s) | EccBrakRFD | Eccentric rate of force development from minimum force at the start of the active braking phase to zero velocity at the end of the eccentric phase |
Eccentric Braking RFD-100ms (N/s) | EccBrakRFD-100 | Eccentric rate of force development over first 100-ms epoch of the active braking phase |
Eccentric Deceleration RFD (N/s) | EccDecRFD | Eccentric rate of force development from maximum negative velocity to zero velocity at the end of the eccentric phase |
Eccentric Mean Force (N) | EccMF | Mean force during the eccentric phase from start of movement to zero velocity |
Eccentric Peak Force (N) | EccPF | Peak force over the eccentric phase |
Force at Peak Power (N) | F@PP | Force exerted at peak power |
Force at Zero Velocity (N) | F@0V | Combined force when velocity is zero/minimum displacement |
Landing RFD (N/s) | LandingRFD | Rate of force development during the landing phase |
Peak Landing Force (N) | Peak Landing Force | Peak force achieved during the landing phase |
Positive Imp (Ns) | PosImp | Total net of positive impulse |
Take-Off Peak Force (N) | Takeoff PF | Peak force over the entire take-off phase |
Intersession Reliability | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Arm Swing (CMJ AS) | No Arm Swing (CMJ NAS) | |||||||||||
CMJ Variable | Mean ± SD | Cron | ICC | SWC | TE | CV% | Mean ± SD | Cron | ICC | SWC | TE | CV% |
Conc Imp (Ns) | 263.0 ± 25.5 | 0.973 | 0.747 | 12.89 | 18.03 | 9.1 | 242.2 ± 14.5 | 0.987 | 0.868 | 8.44 | 10.22 | 6.1 |
Conc Imp-50ms (Ns) | 44.0 ± 4.7 | 0.980 | 0.800 | 2.28 | 3.32 | 11.2 | 48.3 ± 4.6 | 0.984 | 0.839 | 2.32 | 3.24 | 9.9 |
Conc Imp-100ms (Ns) | 91.0 ± 9.7 | 0.978 | 0.786 | 4.74 | 6.87 | 11.3 | 97.0 ± 8.0 | 0.986 | 0.854 | 4.34 | 5.64 | 8.7 |
Conc Mean Force (N) | 916.6 ± 52.6 | 0.989 | 0.879 | 32.76 | 37.23 | 5.8 | 878.4 ± 45.2 | 0.992 | 0.909 | 31.11 | 31.99 | 5.3 |
Conc Peak Force (N) | 1201.3 ± 52.6 | 0.995 | 0.942 | 45.00 | 37.17 | 4.5 | 1084.8 ± 58.3 | 0.992 | 0.911 | 41.24 | 41.21 | 5.4 |
Ecc Brak RFD (N/s) | 2609.5 ± 659.4 | 0.976 | 0.772 | 293.98 | 466.29 | 27.9 | 2578.4 ± 618 | 0.982 | 0.823 | 293.17 | 436.98 | 26.7 |
Ecc Brak RFD-100ms (N/s) | 2137.1 ± 1238.5 | 0.834 | 0.296 | 338.03 | 875.75 | 58.1 | 1548.6 ± 815.9 | 0.918 | 0.482 | 266.32 | 576.93 | 54.5 |
Ecc Dec RFD (N/s) | 2945.3 ± 802.1 | 0.981 | 0.851 | 395.93 | 567.15 | 32.3 | 3240.3 ± 812.8 | 0.985 | 0.844 | 425.77 | 574.73 | 28.3 |
Ecc Mean Force (N) | 442.3 ± 37.1 | 0.956 | 0.644 | 13.43 | 26.21 | 8.4 | 441.4 ± 30.1 | 0.972 | 0.744 | 12.97 | 21.25 | 6.8 |
Ecc Peak Force (N) | 918.9 ± 97.8 | 0.98 | 0.803 | 47.06 | 69.13 | 11.1 | 978.0 ± 105.6 | 0.981 | 0.815 | 49.38 | 74.64 | 11.1 |
Force at Peak Power (N) | 1096.2 ± 47.2 | 0.995 | 0.940 | 39.09 | 33.38 | 4.4 | 958.8 ± 47.5 | 0.991 | 0.901 | 30.51 | 33.58 | 5.0 |
Force at Zero Vel (N) | 893.6 ± 93.6 | 0.980 | 0.805 | 46.4 | 66.22 | 10.9 | 974.4 ± 105.7 | 0.981 | 0.812 | 49.11 | 74.72 | 11.1 |
Landing RFD (N/s) | 4,3754.7 ± 1,4970.4 | 0.956 | 0.647 | 6350.06 | 10585.67 | 34 | 4,2511.3 ± 1,3481.2 | 0.97 | 0.729 | 5895.85 | 9532.61 | 33.8 |
Peak Landing Force (N) | 2524.4 ± 514.3 | 0.970 | 0.730 | 218.77 | 363.64 | 20.7 | 2480.7 ± 499.5 | 0.97 | 0.733 | 201.28 | 353.23 | 21.5 |
Positive Imp (Ns) | 735.2 ± 82 | 0.933 | 0.538 | 26.01 | 57.96 | 11.0 | 706.4 ± 74.9 | 0.922 | 0.498 | 22.13 | 52.96 | 10.7 |
Take-Off Peak Force (N) | 1204.3 ± 53.9 | 0.994 | 0.937 | 44.52 | 38.14 | 4.6 | 1086.9 ± 58.4 | 0.992 | 0.911 | 41.36 | 41.3 | 5.4 |
Intrasession Reliability | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Arm Swing (CMJ AS) | No Arm Swing (CMJ NAS) | |||||||||||
CMJ Variable | Mean ± SD | Cron | ICC | SWC | TE | CV% | Mean ± SD | Cron | ICC | SWC | TE | CV% |
Conc Imp (Ns) | 263.0 ± 19.7 | 0.964 | 0.817 | 12.76 | 13.94 | 7.1 | 242.1 ± 13.1 | 0.979 | 0.886 | 8.45 | 9.25 | 5.5 |
Conc Imp-50ms (Ns) | 44.0 ± 4 | 0.967 | 0.832 | 2.28 | 2.84 | 9.6 | 48.3 ± 4.1 | 0.974 | 0.863 | 2.32 | 2.91 | 8.9 |
Conc Imp-100ms (Ns) | 91.0 ± 8.4 | 0.962 | 0.809 | 4.74 | 5.92 | 9.7 | 97.0 ± 7.1 | 0.978 | 0.932 | 4.34 | 5.00 | 7.7 |
Conc Mean Force (N) | 916.6 ± 47.9 | 0.979 | 0.884 | 32.81 | 33.84 | 5.3 | 878.4 ± 41 | 0.986 | 0.923 | 31.14 | 29.01 | 4.8 |
Conc Peak Force (N) | 1201.3 ± 46.3 | 0.992 | 0.95 | 45.08 | 32.76 | 4.0 | 1084.8 ± 54.3 | 0.985 | 0.918 | 41.28 | 38.39 | 5.1 |
Ecc Brak RFD (N/s) | 2609.5 ± 581.5 | 0.961 | 0.805 | 294.41 | 411.18 | 25.1 | 2578.4 ± 548.5 | 0.971 | 0.849 | 293.65 | 387.86 | 23.9 |
Ecc Brak RFD-100ms (N/s) | 2137.1 ± 1112 | 0.771 | 0.363 | 333.66 | 786.3 | 52.0 | 1548.6 ± 779.7 | 0.842 | 0.472 | 263.48 | 551.36 | 51.5 |
Ecc Dec RFD (N/s) | 2945.3 ± 684.6 | 0.971 | 0.851 | 396.59 | 484.07 | 27.3 | 3240.3 ± 721.9 | 0.976 | 0.872 | 426.49 | 510.44 | 25.4 |
Ecc Mean Force (N) | 442.3 ± 36.7 | 0.906 | 0.615 | 13.45 | 25.95 | 8.3 | 441.4 ± 29.8 | 0.940 | 0.726 | 12.99 | 21.09 | 6.7 |
Ecc Peak Force (N) | 918.9 ± 86 | 0.969 | 0.838 | 47.07 | 60.82 | 9.8 | 978.0 ± 94.6 | 0.970 | 0.842 | 49.45 | 66.92 | 10.0 |
Force at Peak Power (N) | 1096.2 ± 43.6 | 0.991 | 0.948 | 39.16 | 30.84 | 4.1 | 958.8 ± 40.8 | 0.987 | 0.925 | 30.56 | 28.87 | 4.3 |
Force at Zero Vel (N) | 893.6 ± 81.6 | 0.969 | 0.839 | 46.41 | 57.73 | 9.6 | 974.4 ± 95 | 0.969 | 0.840 | 49.19 | 67.20 | 10.1 |
Landing RFD (N/s) | 43754.7 ± 1,2295.8 | 0.947 | 0.751 | 6347.75 | 8694.47 | 28.3 | 42511.3 ± 1,1777.2 | 0.953 | 0.774 | 5899.38 | 8327.73 | 29.9 |
Peak Landing Force (N) | 2524.4 ± 465.5 | 0.953 | 0.772 | 218.97 | 329.16 | 19.2 | 2480.7 ± 459.6 | 0.952 | 0.768 | 201.66 | 325.02 | 19.9 |
Positive Imp (Ns) | 735.2 ± 77.6 | 0.874 | 0.538 | 26.04 | 54.89 | 10.3 | 706.4 ± 71.3 | 0.868 | 0.523 | 22.14 | 50.39 | 10.2 |
Take-Off Peak Force (N) | 1204.3 ± 47.5 | 0.991 | 0.947 | 44.59 | 33.58 | 4.1 | 1086.9 ± 54.6 | 0.986 | 0.918 | 41.40 | 38.62 | 5.1 |
Variable | CMJ AS | CMJ NAS |
---|---|---|
Conc Imp (Ns) | 14.5 ± 9.0 | 15.2 ± 6.4 |
Conc Imp-50ms (Ns) | 3.7 ± 1.7 | 4.4 ± 2.1 |
Conc Imp-100ms (Ns) | 6.5 ± 3.2 | 7.8 ± 3.2 * |
Conc Mean Force (N) | 50.6 ± 28.2 | 54.8 ± 22.3 |
Conc Peak Force (N) | 47.0 ± 27.5 | 60.1 ± 32.4 |
Ecc Brak RFD (N/s) | 507.1 ± 289.2 | 393.4 ± 199.0 * |
Ecc Brak RFD-100ms (N/s) | 1198.4 ± 803.2 | 838.5 ± 639.6 |
Ecc Dec RFD (N/s) | 632.3 ± 280.4 | 502.1 ± 252.6 * |
Ecc Mean Force (N) | 57.3 ± 30.0 | 48.5 ± 19.8 |
Ecc Peak Force (N) | 85.3 ± 39.5 | 95.9 ± 52.0 |
Force at Peak Power (N) | 84.0 ± 37.7 | 96.5 ± 52.3 |
Force at Zero Vel (N) | 46.7 ± 26.3 | 38.4 ± 25.2 * |
Landing RFD (N/s) | 13133.5 ± 9472.6 | 11727.2 ± 7779.9 |
Peak Landing Force (N) | 547.3 ± 277.8 | 490.3 ± 196.5 |
Positive Imp (Ns) | 100.4 ± 52.5 | 94.1 ± 37.3 |
Take-Off Peak Force (N) | 48.5 ± 29.3 | 60.7 ± 32.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heishman, A.; Daub, B.; Miller, R.; Brown, B.; Freitas, E.; Bemben, M. Countermovement Jump Inter-Limb Asymmetries in Collegiate Basketball Players. Sports 2019, 7, 103. https://doi.org/10.3390/sports7050103
Heishman A, Daub B, Miller R, Brown B, Freitas E, Bemben M. Countermovement Jump Inter-Limb Asymmetries in Collegiate Basketball Players. Sports. 2019; 7(5):103. https://doi.org/10.3390/sports7050103
Chicago/Turabian StyleHeishman, Aaron, Bryce Daub, Ryan Miller, Brady Brown, Eduardo Freitas, and Michael Bemben. 2019. "Countermovement Jump Inter-Limb Asymmetries in Collegiate Basketball Players" Sports 7, no. 5: 103. https://doi.org/10.3390/sports7050103
APA StyleHeishman, A., Daub, B., Miller, R., Brown, B., Freitas, E., & Bemben, M. (2019). Countermovement Jump Inter-Limb Asymmetries in Collegiate Basketball Players. Sports, 7(5), 103. https://doi.org/10.3390/sports7050103