Acute Effects of Accelerated Eccentrics and Accentuated Eccentric Loading on Squat Performance and Lower-Limb Biomechanics
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Testing Procedures
2.4. Data Collection and Processing
2.4.1. Data Collection
2.4.2. Data Processing
2.5. Statistical Analysis
3. Results
3.1. Performance
3.1.1. Movement Time
3.1.2. Barbell Displacement
3.1.3. Barbell Velocity
3.2. Kinematics
3.2.1. Joint Angular Velocity
3.2.2. Joint Angular Range of Motion
3.3. Kinetics
3.3.1. Ground Reaction Forces (GRF)
3.3.2. Joint Moments
4. Discussion
Limitations
- Although an elastic band was used as an external reference to standardize squat depth and ROM across conditions, this approach may have introduced small between-subject differences in the actual movement amplitude, which could have slightly affected the kinematic and kinetic outputs.
- Upper-limb contributions were not explicitly modeled. Although the squat task and grip were standardized so that the arms served only to stabilize the barbell, a small influence of upper-limb involvement on the lower-limb outcomes cannot be completely ruled out.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The Importance of Muscular Strength in Athletic Performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J. The Mechanisms of Muscle Hypertrophy and Their Application to Resistance Training. J. Strength Cond. Res. 2010, 24, 2857–2872. [Google Scholar] [CrossRef]
- Nuzzo, J.L.; Pinto, M.D.; Nosaka, K.; Steele, J. The Eccentric:Concentric Strength Ratio of Human Skeletal Muscle In Vivo: Meta-Analysis of the Influences of Sex, Age, Joint Action, and Velocity. Sports Med. 2023, 53, 1125–1136. [Google Scholar] [CrossRef]
- Sarto, F.; Franchi, M.V.; Rigon, P.A.; Grigoletto, D.; Zoffoli, L.; Zanuso, S.; Narici, M.V. Muscle Activation during Leg-Press Exercise with or without Eccentric Overload. Eur. J. Appl. Physiol. 2020, 120, 1651–1656. [Google Scholar] [CrossRef] [PubMed]
- Hody, S.; Croisier, J.-L.; Bury, T.; Rogister, B.; Leprince, P. Eccentric Muscle Contractions: Risks and Benefits. Front. Physiol. 2019, 10, 442082. [Google Scholar] [CrossRef] [PubMed]
- Franchi, M.V.; Reeves, N.D.; Narici, M.V. Skeletal Muscle Remodeling in Response to Eccentric vs. Concentric Loading: Morphological, Molecular, and Metabolic Adaptations. Front. Physiol. 2017, 8, 447. [Google Scholar] [CrossRef]
- Bohm, S.; Mersmann, F.; Arampatzis, A. Human Tendon Adaptation in Response to Mechanical Loading: A Systematic Review and Meta-Analysis of Exercise Intervention Studies on Healthy Adults. Sports Med. Open 2015, 1, 7. [Google Scholar] [CrossRef]
- Aagaard, P.; Simonsen, E.B.; Andersen, J.L.; Magnusson, S.P.; Halkjaer-Kristensen, J.; Dyhre-Poulsen, P. Neural Inhibition during Maximal Eccentric and Concentric Quadriceps Contraction: Effects of Resistance Training. J. Appl. Physiol. 2000, 89, 2249–2257. [Google Scholar] [CrossRef]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Changes in the Eccentric Phase Contribute to Improved Stretch-Shorten Cycle Performance after Training. Med. Sci. Sports Exerc. 2010, 42, 1731–1744. [Google Scholar] [CrossRef]
- Komi, P.V. Stretch-Shortening Cycle: A Powerful Model to Study Normal and Fatigued Muscle. J. Biomech. 2000, 33, 1197–1206. [Google Scholar] [CrossRef]
- Avela, J.; Komi, P.V. Reduced Stretch Reflex Sensitivity and Muscle Stiffness after Long-Lasting Stretch-Shortening Cycle Exercise in Humans. Eur. J. Appl. Physiol. 1998, 78, 403–410. [Google Scholar] [CrossRef]
- Taube, W.; Leukel, C.; Gollhofer, A. How Neurons Make Us Jump. Exerc. Sport Sci. Rev. 2012, 40, 106. [Google Scholar] [CrossRef]
- Handford, M.J.; Bright, T.E.; Mundy, P.; Lake, J.; Theis, N.; Hughes, J.D. The Need for Eccentric Speed: A Narrative Review of the Effects of Accelerated Eccentric Actions During Resistance-Based Training. Sports Med. 2022, 52, 2061–2083. [Google Scholar] [CrossRef]
- Armstrong, R.; Baltzopoulos, V.; Langan-Evans, C.; Clark, D.; Jarvis, J.; Stewart, C.; O’Brien, T. An Investigation of Movement Dynamics and Muscle Activity during Traditional and Accentuated-Eccentric Squatting. PLoS ONE 2022, 17, e0276096. [Google Scholar] [CrossRef]
- Achermann, B.B.; Drewek, A.; Lorenzetti, S.R. Acute Effect of the Bounce Squat on Ground Reaction Force at the Turning Point and Barbell Kinematics. J. Strength Cond. Res. 2025, 10-1519. [Google Scholar] [CrossRef]
- Sheppard, J.; Newton, R.; McGuigan, M. The Effect of Accentuated Eccentric Load on Jump Kinetics in High-Performance Volleyball Players. Int. J. Sports Sci. Coach. 2007, 2, 267–273. [Google Scholar] [CrossRef]
- Munger, C.N.; Archer, D.C.; Leyva, W.D.; Wong, M.A.; Coburn, J.W.; Costa, P.B.; Brown, L.E. Acute Effects of Eccentric Overload on Concentric Front Squat Performance. J. Strength Cond. Res. 2017, 31, 1192–1197. [Google Scholar] [CrossRef]
- Aboodarda, S.J.; Hamid, M.S.A.; Che Muhamed, A.M.; Ibrahim, F.; Thompson, M. Resultant Muscle Torque and Electromyographic Activity during High Intensity Elastic Resistance and Free Weight Exercises. Eur. J. Sport Sci. 2013, 13, 155–163. [Google Scholar] [CrossRef]
- Merrigan, J.J.; Tufano, J.J.; Jones, M.T. Potentiating Effects of Accentuated Eccentric Loading Are Dependent Upon Relative Strength. J. Strength Cond. Res. 2021, 35, 1208–1216. [Google Scholar] [CrossRef] [PubMed]
- Virgile, A.; Bishop, C. A Narrative Review of Limb Dominance: Task Specificity and the Importance of Fitness Testing. J. Strength Cond. Res. 2021, 35, 846. [Google Scholar] [CrossRef]
- Merrigan, J.J.; Tufano, J.J.; Falzone, M.; Jones, M.T. Effectiveness of Accentuated Eccentric Loading: Contingent on Concentric Load. Int. J. Sports Physiol. Perform. 2020, 16, 66–72. [Google Scholar] [CrossRef]
- Segers, N.; Waldron, M.; Howe, L.P.; Patterson, S.D.; Moran, J.; Jones, B.; Kidgell, D.J.; Tallent, J. Slow-Speed Compared With Fast-Speed Eccentric Muscle Actions Are Detrimental to Jump Performance in Elite Soccer Players In-Season. Int. J. Sports Physiol. Perform. 2022, 17, 1425–1431. [Google Scholar] [CrossRef]
- Shibata, K.; Takizawa, K.; Nosaka, K.; Mizuno, M. Effects of Prolonging Eccentric Phase Duration in Parallel Back-Squat Training to Momentary Failure on Muscle Cross-Sectional Area, Squat One Repetition Maximum, and Performance Tests in University Soccer Players. J. Strength Cond. Res. 2021, 35, 668. [Google Scholar] [CrossRef]
- Mike, J.N.; Cole, N.; Herrera, C.; VanDusseldorp, T.; Kravitz, L.; Kerksick, C.M. The Effects of Eccentric Contraction Duration on Muscle Strength, Power Production, Vertical Jump, and Soreness. J. Strength Cond. Res. 2017, 31, 773–786. [Google Scholar] [CrossRef]
- Wilk, M.; Jarosz, J.; Krzysztofik, M.; Filip-Stachnik, A.; Bialas, M.; Rzeszutko-Belzowska, A.; Zajac, A.; Stastny, P. Contrast Tempo of Movement and Its Effect on Power Output and Bar Velocity During Resistance Exercise. Front. Physiol. 2021, 11, 629199. [Google Scholar] [CrossRef] [PubMed]
- Wilk, M.; Zajac, A.; Tufano, J.J. The Influence of Movement Tempo During Resistance Training on Muscular Strength and Hypertrophy Responses: A Review. Sports Med. 2021, 51, 1629–1650. [Google Scholar] [CrossRef]
- Kojic, F.; Mandic, D.; Duric, S. The Effects of Eccentric Phase Tempo in Squats on Hypertrophy, Strength, and Contractile Properties of the Quadriceps Femoris Muscle. Front. Physiol. 2025, 15, 1531926. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J.; Ogborn, D.I.; Krieger, J.W. Effect of Repetition Duration During Resistance Training on Muscle Hypertrophy: A Systematic Review and Meta-Analysis. Sports Med. 2015, 45, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Doan, B.K.; Newton, R.U.; Marsit, J.L.; Triplett-McBride, N.T.; Koziris, L.P.; Fry, A.C.; Kraemer, W.J. Effects of Increased Eccentric Loading on Bench Press 1RM. J. Strength Cond. Res. 2002, 16, 9–13. [Google Scholar]
- Frykberg, G.E.; Grip, H.; Murphy, M.A. How Many Trials Are Needed in Kinematic Analysis of Reach-to-Grasp?—A Study of the Drinking Task in Persons with Stroke and Non-Disabled Controls. J. Neuroeng. Rehabil. 2021, 18, 101. [Google Scholar] [CrossRef]
- Duchateau, J.; Semmler, J.G.; Enoka, R.M. Training Adaptations in the Behavior of Human Motor Units. J. Appl. Physiol. 2006, 101, 1766–1775. [Google Scholar] [CrossRef]
- Ojasto, T.; Häkkinen, K. Effects of Different Accentuated Eccentric Loads on Acute Neuromuscular, Growth Hormone, and Blood Lactate Responses During a Hypertrophic Protocol. J. Strength Cond. Res. 2009, 23, 946–953. [Google Scholar] [CrossRef]
- Van den Tillaar, R. Effect of Descent Velocity upon Muscle Activation and Performance in Two-Legged Free Weight Back Squats. Sports 2019, 7, 15. [Google Scholar] [CrossRef]
- Kristianslund, E.; Krosshaug, T.; van den Bogert, A.J. Effect of Low Pass Filtering on Joint Moments from Inverse Dynamics: Implications for Injury Prevention. J. Biomech. 2012, 45, 666–671. [Google Scholar] [CrossRef]
- Winter, D.A. Biomechanics and Motor Control of Human Movement, 4th ed.; Wiley: Hoboken, NJ, USA, 2009; ISBN 978-0-470-39818-0. [Google Scholar]
- Angel, R.P.M.; Jorgensen, A.; Werner, D.M.; Tao, M.A.; Wellsandt, E. Knee Loading Asymmetries During Descent and Ascent Phases of Squatting After ACL Reconstruction. Appl. Sci. 2025, 15, 7780. [Google Scholar] [CrossRef]
- Stevens, W.R.; Kokoszka, A.Y.; Anderson, A.M.; Tulchin-Francis, K. Automated Event Detection Algorithm for Two Squatting Protocols. Gait Posture 2018, 59, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Zieliński, G. Effect Size Guidelines for Individual and Group Differences in Physiotherapy. Arch. Phys. Med. Rehabil. 2025; in press. [Google Scholar] [CrossRef]
- Earp, J.E.; Newton, R.U.; Cormie, P.; Blazevich, A.J. Faster Movement Speed Results in Greater Tendon Strain during the Loaded Squat Exercise. Front. Physiol. 2016, 7, 366. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, R. The Biomechanical Underpinnings and Subsequent Physiological Adaptations of Accentuated-Eccentric Loading in Strength-Trained Males. Ph.D. Thesis, Liverpool John Moores University, Liverpool, UK, August 2023. [Google Scholar]
- Bryanton, M.A.; Kennedy, M.D.; Carey, J.P.; Chiu, L.Z.F. Effect of Squat Depth and Barbell Load on Relative Muscular Effort in Squatting. J. Strength Cond. Res. 2012, 26, 2820–2828. [Google Scholar] [CrossRef] [PubMed]
- Wagle, J.P.; Taber, C.B.; Cunanan, A.J.; Bingham, G.E.; Carroll, K.M.; DeWeese, B.H.; Sato, K.; Stone, M.H. Accentuated Eccentric Loading for Training and Performance: A Review. Sports Med. 2017, 47, 2473–2495. [Google Scholar] [CrossRef]







| Age (yrs) | Height (cm) | Body Mass (kg) | Body Fat (%) | Back-Squat 1RM (kg) |
|---|---|---|---|---|
| 21.92 ± 2.66 | 175.88 ± 4.39 | 73.18 ± 8.08 | 14.66 ± 3.61 | 134.29 ± 18.78 |
| Variable | Phase | AEL | CR | AE | p-Value |
|---|---|---|---|---|---|
| Movement time (s) | Eccentric | 1.84 ± 0.29 c | 1.86 ± 0.24 c | 0.85 ± 0.12 | <0.001 * |
| Concentric | 0.85 ± 0.13 cb | 0.80 ± 0.09 c | 0.74 ± 0.08 | <0.001 * | |
| Barbell displacement (m) | Eccentric | 0.55 ± 0.06 | 0.55 ± 0.07 | 0.56 ± 0.07 | 0.138 |
| Concentric | 0.59 ± 0.06 b | 0.58 ± 0.06 | 0.59 ± 0.06 | 0.019 * | |
| Peak barbell velocity (m/s) | Eccentric | 0.57 ± 0.11 c | 0.53 ± 0.11 c | 1.21 ± 0.24 | <0.001 * |
| Concentric | 1.26 ± 0.19 c | 1.27 ± 0.15 c | 1.35 ± 0.13 | <0.001 * | |
| Mean barbell velocity (m/s) | Eccentric | 0.33 ± 0.05 c | 0.33 ± 0.05 c | 0.70 ± 0.14 | <0.001 * |
| Concentric | 0.68 ± 0.09 c | 0.70 ± 0.09 c | 0.77 ± 0.09 | <0.001 * | |
| Hip ROM (°) | Eccentric | 80.58 ± 7.27 | 79.15 ± 9.39 | 82.39 ± 9.25 | 0.059 |
| Concentric | 80.47 ± 7.99 | 77.55 ± 7.95 | 79.52 ± 8.69 | 0.052 | |
| Knee ROM (°) | Eccentric | 88.50 ± 20.12 | 87.97 ± 21.52 | 90.92 ± 20.96 | 0.050 |
| Concentric | 91.69 ± 20.23 | 91.19 ± 21.68 | 92.32 ± 21.99 | 0.681 | |
| Ankle ROM (°) | Eccentric | 27.49 ± 5.60 | 26.96 ± 6.11 | 27.21 ± 5.29 | 0.673 |
| Concentric | 31.26 ± 7.27 | 29.48 ± 7.00 | 31.01 ± 7.26 | 0.224 | |
| Peak hip angular velocity (°/s) | Eccentric | 86.69 ± 21.28 c | 86.68 ± 26.97 c | 176.03 ± 38.39 | <0.001 * |
| Concentric | 203.91 ± 33.10 | 204.40 ± 32.65 | 216.23 ± 34.37 | <0.001 * | |
| Peak knee angular velocity (°/s) | Eccentric | 111.76 ± 26.30 c | 109.35 ± 33.75 c | 224.06 ± 41.88 | <0.001 * |
| Concentric | 286.48 ± 51.13 | 274.07 ± 42.40 c | 301.11 ± 49.33 | 0.056 | |
| Peak ankle angular velocity (°/s) | Eccentric | 44.94 ± 11.06 c | 43.39 ± 12.61 c | 88.97 ± 19.67 | <0.001 * |
| Concentric | 126.66 ± 38.76 b | 110.48 ± 29.69 c | 131.12 ± 43.52 | 0.003 * | |
| Mean hip angular velocity (°/s) | Eccentric | 40.98 ± 6.91 c | 40.00 ± 6.91 c | 91.91 ± 17.25 | <0.001 * |
| Concentric | 85.42 ± 16.65 c | 86.79 ± 14.63 c | 95.67 ± 15.86 | 0.001 * | |
| Mean knee angular velocity (°/s) | Eccentric | 59.52 ± 10.96 c | 58.07 ± 10.54 c | 131.02 ± 24.06 | <0.001 * |
| Concentric | 127.12 ± 21.79 c | 131.40 ± 19.62 c | 144.08 ± 18.24 | <0.001 * | |
| Mean ankle angular velocity (°/s) | Eccentric | 16.90 ± 3.17 c | 16.26 ± 3.55 c | 36.65 ± 8.82 | <0.001 * |
| Concentric | 38.93 ± 10.63 c | 38.99 ± 10.22 c | 45.08 ± 11.17 | <0.001 * | |
| Peak GRF (N/kg) | Whole movement | 28.75 ± 2.04 c | 28.25 ± 2.72 c | 30.99 ± 3.76 | <0.001 * |
| Mean GRF (N/kg) | Eccentric | 25.18 ± 1.37 bc | 20.81 ± 1.01 | 20.84 ± 1.02 | <0.001 * |
| Concentric | 20.91 ± 0.90 | 20.93 ± 0.99 | 20.99 ± 1.03 | 0.349 | |
| Peak hip joint moment (Nm/kg) | Whole movement | 2.56 ± 0.55 c | 2.52 ± 0.47 c | 2.80 ± 0.63 | 0.002 * |
| Peak knee joint moment (Nm/kg) | Whole movement | 2.57 ± 0.47 c | 2.51 ± 0.63 c | 2.75 ± 0.56 | 0.001 * |
| Peak ankle joint moment (Nm/kg) | Whole movement | 1.09 ± 0.37 c | 1.03 ± 0.34 c | 1.21 ± 0.38 | 0.005 * |
| Mean hip joint moment (Nm/kg) | Eccentric | 1.59 ± 0.46 bc | 1.29 ± 0.35 | 1.38 ± 0.38 | <0.001 * |
| Concentric | 1.65 ± 0.44 | 1.69 ± 0.40 | 1.68 ± 0.40 | <0.001 * | |
| Mean knee joint moment (Nm/kg) | Eccentric | 1.76 ± 0.33 bc | 1.52 ± 0.33 | 1.56 ± 0.28 | <0.001 * |
| Concentric | 1.54 ± 0.30 | 1.52 ± 0.30 | 1.50 ± 0.30 | 0.609 | |
| Mean ankle joint moment (Nm/kg) | Eccentric | 0.63 ± 0.30 bc | 0.43 ± 0.24 | 0.49 ± 0.24 | 0.589 |
| Concentric | 0.64 ± 0.31 | 0.65 ± 0.30 | 0.73 ± 0.27 | 0.100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Zhou, H.; Xiang, X.; Wang, R. Acute Effects of Accelerated Eccentrics and Accentuated Eccentric Loading on Squat Performance and Lower-Limb Biomechanics. Sports 2025, 13, 418. https://doi.org/10.3390/sports13120418
Zhang M, Zhou H, Xiang X, Wang R. Acute Effects of Accelerated Eccentrics and Accentuated Eccentric Loading on Squat Performance and Lower-Limb Biomechanics. Sports. 2025; 13(12):418. https://doi.org/10.3390/sports13120418
Chicago/Turabian StyleZhang, Mingrui, Hao Zhou, Xiaoyan Xiang, and Ran Wang. 2025. "Acute Effects of Accelerated Eccentrics and Accentuated Eccentric Loading on Squat Performance and Lower-Limb Biomechanics" Sports 13, no. 12: 418. https://doi.org/10.3390/sports13120418
APA StyleZhang, M., Zhou, H., Xiang, X., & Wang, R. (2025). Acute Effects of Accelerated Eccentrics and Accentuated Eccentric Loading on Squat Performance and Lower-Limb Biomechanics. Sports, 13(12), 418. https://doi.org/10.3390/sports13120418

