Natural Products for the Control of Scaphoideus titanus in Vineyards: A Summary of Five-Year Field Trials
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Sampling Procedures
- Pyrethrins (Biopiren®, Biogard—CBC Europe, Bergamo, Italy), a contact insecticide based on natural pyrethrins with rapid knock-down activity but limited persistence [12];
- Kaolin (Surround®—Serbios s.r.l, Rovigo, Italy; Polvere di Roccia®, Biogard—CBC Europe, Bergamo, Italy), a 100% natural aluminum silicate clay formulation used as a physical particle film that interferes with host location and reduces leafhopper feeding behavior.
2.2. Statistical Analyses
3. Results
3.1. 2021
3.2. 2022
3.3. 2023
3.4. 2024
3.5. 2025
3.6. Evaluation of Insecticide Efficacy
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jeger, M.; Bragard, C.; Caffier, D.; Candresse, T.; Chatzivassiliou, E.; Dehnen-Schmutz, K.; Gilioli, G.; Jaques Miret, J.A.; Macleod, A.; Navarro, M.N.; et al. Risk to Plant Health of Flavescence Dorée for the EU Territory. EFSA J. 2016, 14, 4603. [Google Scholar] [CrossRef]
- Oliveira, M.J.R.A.; Roriz, M.; Vasconcelos, M.W.; Bertaccini, A.; Carvalho, S.M.P. Conventional and Novel Approaches for Managing “Flavescence Dorée” in Grapevine: Knowledge Gaps and Future Prospects. Plant Pathol. 2019, 68, 3–17. [Google Scholar] [CrossRef]
- Chuche, J.; Thiéry, D. Biology and ecology of the Flavescence dorée vector Scaphoideus titanus: A review. Agron. Sustain. Dev. 2014, 34, 381. [Google Scholar] [CrossRef]
- Gonella, E.; Benelli, G.; Arricau-Bouvery, N.; Bosco, D.; Duso, C.; Dietrich, C.H.; Galetto, L.; Rizzoli, A.; Jović, J.; Mazzoni, V.; et al. Scaphoideus titanus Up-to-the-Minute: Biology, Ecology, and Role as a Vector. Entomol. Gen. 2024, 44, 481–496. [Google Scholar] [CrossRef]
- Gonella, E.; Benelli, G.; Arricau-Bouvery, N.; Bosco, D.; Duso, C.; Dietrich, C.H.; Galetto, L.; Rizzoli, A.; Jović, J.; Mazzoni, V.; et al. Scaphoideus titanus forecasting and management: Quo vadis? Entomol. Gen. 2024, 44, 497–510. [Google Scholar] [CrossRef]
- Bocca, F.M.; Picciau, L.; Alma, A. New insights on Scaphoideus titanus biology and their implication for integrated pest management. Entomol. Gen. 2020, 4, 337–349. [Google Scholar] [CrossRef]
- Pavan, F.; Stefanelli, G.; Villani, A.; Mori, N.; Posenato, G.; Bressan, A.; Girolami, V. Controllo di FD attraverso la lotta contro il vettore Scaphoideus titanu Ball. Flavescenza dorata e altri giallumi della vite in Toscana e in Italia 2005, 3, 91–116. (In Italian) [Google Scholar]
- Tacoli, F.; Mori, N.; Pozzebon, A.; Cargnus, E.; Da Vià, S.; Zandigiacomo, P.; Duso, C.; Pavan, F. Control of Scaphoideus titanus with natural products in organic vineyards. Insects 2017, 8, 129. [Google Scholar] [CrossRef] [PubMed]
- Cizej, M.R.; Poličnik, F.; Ferlež Rus, A.; Miklavc, J.; Matko, B.; Mešl, M.; Miklavc, M.; Lešnik, L.; Pulko, E.; Škrabar, U.; et al. Experiences with the Control of American Grapevine Leafhopper (Scaphoideus titanus Ball 1932, Hemiptera, Cicadellidae) in 2021 and 2022; Plant Protection Society of Slovenia: Ljubljana, Slovenia, 2022; pp. 330–343. [Google Scholar]
- Linder, C.; Jeanrenaud, M.; Kehrli, P. Controlling Scaphoideus titanus with kaolin? Summary of four years of field trials in Switzerland. Oeno One 2023, 57, 323–329. [Google Scholar] [CrossRef]
- Prazaru, S.C.; D’Ambrogio, L.; Dal Cero, M.; Rasera, M.; Cenedese, G.; Guerrieri, E.; Pavasini, M.; Mori, N.; Pavan, F.; Duso, C. Efficacy of Conventional and Organic Insecticides against Scaphoideus titanus: Field and Semi-Field Trials. Insects 2023, 14, 101. [Google Scholar] [CrossRef]
- Schleier, J.J., III; Peterson, R.K.D. Pyrethrins and pyrethroid insecticides. In Green Trends in Insect Control; Lopez, O., Fernandez-Bolanos, J., Eds.; Royal Society of Chemistry: Cambridge, UK, 2011; Chapter 3; pp. 94–131. [Google Scholar]
- Angioni, A.; Dedola, F.; Minelli, E.V.; Barra, A.; Cabras, P.; Caboni, P. Residues and Half-Life Times of Pyrethrins on Peaches after Field Treatments. J. Agric. Food Chem. 2005, 53, 4059–4063. [Google Scholar] [CrossRef]
- Caboni, P.; Minello, E.V.; Cabras, M.; Angioni, A.; Sarais, G.; Dedola, F.; Cabras, P. Degradation of pyrethrin residues on stored durum wheat. J. Agric. Food Chem. 2007, 55, 6087–6091. [Google Scholar] [CrossRef]
- Minello, E.V.; Angioni, A.; Cabras, P. Effect of sunscreen and antioxidant on the stability of pyrethrins. J. Agric. Food Chem. 2005, 53, 2987–2992. [Google Scholar] [CrossRef]
- OECD. Consensus Document on Beauveria Bassiana Strains as Microbial Plant Protection Product: Regulatory Considerations for Beauveria Bassiana Strains; Series on Pesticides and Biocides; OECD Publishing: Paris, France, 2025. [Google Scholar] [CrossRef]
- Glenn, D.M.; Puterka, G.J. Particle films: A new technology for agriculture. Hort. Rev. 2005, 31, 1–44. [Google Scholar]
- Tacoli, F.; Pavan, F.; Cargnus, E.; Tilatti, E.; Pozzebon, A.; Zandigiacomo, P. Efficacy and mode of action of kaolin in the control of Empoasca vitis and Zygina rhamni (Hemiptera: Cicadellidae) in vineyards. J. Econ. Entomol. 2017, 110, 1164–1178. [Google Scholar] [CrossRef]
- Glenn, D.M. The mechanisms of plant stress mitigation by kaolin-based particle films and applications in horticultural and agricultural crops. HortScience 2012, 47, 710–711. [Google Scholar] [CrossRef]
- Copp, C.R.; Smit, C.; Glenn, D.M. Kaolin clay reduces western grape leafhopper abundance and fruit sunburn in warm-climate vineyards. HortTechnology 2025, 35, 353–364. [Google Scholar] [CrossRef]
- Cargnus, E.; Tacoli, F.; Boscutti, F.; Zandigiamo, P.; Pavan, F. Side effects of kaolin and bunch-zone leaf removal on generalist predators in vineyards. Insects 2023, 14, 126. [Google Scholar] [CrossRef] [PubMed]
- Prazaru, S.C.; Tirello, P.; Rossetto, F.; Pozzebon, A.; Duso, C. Kaolin in vineyards: Effects on Erasmoneura vulnerata and non-target species. Crop Prot. 2024, 179, 106628. [Google Scholar] [CrossRef]
- Tirello, P.; Marchesini, E.; Gherardo, P.; Raniero, D.; Rossetto, F.; Pozzebon, A.; Duso, C. The control of the American leafhopper Erasmoneura vulnerata (Fitch) in European vineyards: Impact of synthetic and natural insecticides. Insects 2021, 12, 85. [Google Scholar] [CrossRef] [PubMed]
- Rondot, Y.; Reineke, A. Endophytic Beauveria bassiana in grapevine Vitis vinifera (L.) reduces infestation with piercing-sucking insects. Biol. Control 2018, 116, 82–89. [Google Scholar] [CrossRef]
- Rondot, Y.; Reineke, A. Endophytic Beauveria bassiana activates expression of defence genes in grapevine and prevents infections by grapevine downy mildew Plasmopara viticola. Plant Pathol. 2019, 68, 1719–1731. [Google Scholar] [CrossRef]
- Pu, X.Y.; Feng, M.G.; Shi, C.H. Impact of three application methods on the field efficacy of a Beauveria bassiana-based mycoinsecticide against the false-eye leafhopper, Empoasca vitis (Homoptera: Cicadellidae) in the tea canopy. Crops Prot. 2005, 24, 167–175. [Google Scholar] [CrossRef]
- Shi, W.-B.; Feng, M.-G. Field efficacy of application of Beauveria bassiana formulation and low rate pyridaben for sustainable control of citrus red mite Panonychus citri (Acari: Tetranychidae) in orchards. Biol. Control 2006, 39, 210–217. [Google Scholar] [CrossRef]
- Kilani-Morakchi, S.; Morakchi-Goudjil, H.; Sifi, K. Azadirachtin-Based Insecticide: Overview, Risk Assessments, and Future Directions. Front. Agron. 2021, 3, 676208. [Google Scholar] [CrossRef]
- Nwonuma, C.B.; Omoniwa, B.P.; Elleke, T.E.; Aladele, P.; Ogundipe, O.E. The modes of action of biopesticidal compounds in insect control. Int. J. Trop. Insect Sci. 2025, 45, 513–523. [Google Scholar] [CrossRef]
- Caruso, S.; Mazio, P. Control trials on Scaphoideus titanus Ball in organic vineyards. ATTI Giornate Fitopatol. 2004, 6, 109–110. (In Italian) [Google Scholar]
- Mori, N.; Tonello, D.; Posenato, G.; Pozzebon, A.; Duso, C. Efficacy of biopesticides against Scaphoideus titanus Ball in different experimental conditions. IOBC/WPRS Bull. 2014, 105, 45–48. [Google Scholar]
- Tremblay, É.; Bélanger, A.; Brosseau, M.; Boivin, G. Toxicity Effects of an Insecticidal Soap on the Green Peach Aphid [Homoptera: Aphididae]. Phytoprotection 2009, 90, 35–39. [Google Scholar] [CrossRef]
- Lami, F.; Burgio, G.; Magagnoli, S.; Depalo, L.; Lanzoni, A.; Frassineti, E.; Marotti, I.; Alpi, M.; Mercatante, D.; Rodriguez-Estrada, M.T.; et al. The Effects of Natural Insecticides on the Green Peach Aphid Myzus persicae (Sulzer) and Its Natural Enemies Propylea quatuordecimpunctata (L.) and Aphidius colemani Viereck. Insects 2024, 15, 556. [Google Scholar] [CrossRef]
- Forte, V.; Bertazzon, N.; Filippin, L.; Angelini, E.; Chemello, M. Prove di efficacia di sali potassici di acidi grassi nella lotta a Scaphoideus titanus, vettore della flavescenza dorata della vite. ATTI Giornate Fitopatol. 2018, 1, 75–84. (In Italian) [Google Scholar]
- Shah, P.; Pell, J. Entomopathogenic fungi as biological control agents. Appl. Microbiol. Biotechnol. 2003, 61, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, G. Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci. Technol. 2007, 17, 553–596. [Google Scholar] [CrossRef]
- McKinnon, A.C.; Saari, S.; Moran-Diez, M.E.; Meyling, N.V.; Raad, M.; Glare, T.R. Beauveria bassiana as an endophyte: A critical review on associated methodology and biocontrol potential. BioControl 2017, 62, 1–17. [Google Scholar] [CrossRef]
- Henderson, C.F.; Tilton, E.W. Tests with acaricides against the brow wheat mite. J. Econ. Entomol. 1955, 48, 157–161. [Google Scholar] [CrossRef]
- Tsolakis, H.; Leto, G.; Ragusa, S. Effects of some plant materials on Tetranychus urticae Koch (Acariformes, Tetranychidae) and Typhlodromus exhilaratus Ragusa (Parasitiformes, Phytoseiidae). In Proceedings of the ANPP-Fourth International Conference on Pests in Agriculture, Montpellier, France, 6–8 January 1997; Association Nationale de Protection des Plantes: Paris, France, 1997; pp. 239–245. [Google Scholar]
- Castagnoli, M.; Angeli, G.; Liguori, M.; Forti, D.; Simoni, S. Side effects of botanical insecticides on predatory mite Amblyseius andersoni (Chant). J. Pest Sci. 2002, 75, 122–127. [Google Scholar] [CrossRef]
- Castagnoli, M.; Liguori, M.; Simoni, S.; Duso, C. Toxicity of some insecticides to Tetranychus urticae, Neoseiulus californicus and Tydeus californicus. BioControl 2005, 50, 611–622. [Google Scholar] [CrossRef]
- Duso, C.; Malagnini, V.; Pozzebon, A.; Castagnoli, M.; Liguori, M.; Simoni, S. Comparative toxicity of botanical and reduced-risk insecticides to Mediterranean populations of Tetranychus urticae and Phytoseiulus persimilis (Acari Tetranychidae, Phytoseiidae). Biol. Control 2008, 47, 16–21. [Google Scholar] [CrossRef]
- Quesada, C.R.; Sadof, C.S. Efficacy of Horticultural Oil and Insecticidal Soap against Selected Armored and Soft Scales. Horttechnology 2017, 27, 618–624. [Google Scholar] [CrossRef]
- Wafula, G.O.; Muthomi, J.W.; Nderitu, J.H.; Chemining’wa, G.N. Efficacy of potassium salts of fatty acids in the management of thrips and whitefly on snap beans. Sustain. Agric. Res. 2017, 6, 45–54. [Google Scholar] [CrossRef]
- Moore, W.S.; Profita, J.C.; Koehler, C.S. Soaps for home landscape insect control. Calif. Agric. 1979, 33, 13–14. [Google Scholar]
- Isman, M.B. Botanical Insecticides in the Twenty-First Century-Fulfilling Their Promise? Annu. Rev. Entomol. 2020, 65, 233–249. [Google Scholar] [CrossRef] [PubMed]





| Product (Trade Name) | Active Ingredient/Strain | Formulation | Maximum Application Rates |
|---|---|---|---|
| Biopiren® Plus | Natural pyrethrins | EC (emulsifiable concentrate) | 2.4 L product/ha 160 mL/hL |
| Oikos® | Azadirachtin A (26 g/L) | EC/liquid formulation | 1.5 L product/ha 180 mL/hL |
| Flipper® | Potassium salts of fatty acids (479.8 g/L) | Liquid concentrate | 20 L product/ha |
| Naturalis® | Beauveria bassiana strain ATCC 74040 | Oil dispersion (OD)/suspension | 1.5 L product/ha |
| Surround® Polvere di Roccia® | Kaolin (100% aluminum silicate) | Wettable powder | 20–30 kg product/ha |
| Product | Mean | 2021 | 2022 | 2023 | 2024 | 2025 |
|---|---|---|---|---|---|---|
| Natural pyrethrins | 83 | - | 57 | 90 | 90 | 93 |
| Kaolin | 58 | 63 | 63 | 55 | 68 | 42 |
| Beauveria bassiana | 37 | 38 | 13 | 77 | 21 | 36 |
| Azadirachtin | 27 | 42 | 12 | - | - | - |
| Potassium salts | 32 | 44 | 20 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Prazaru, S.C.; Forlin, L.; Cera, L.; D’Ambrogio, L.; Pozzebon, A.; Duso, C. Natural Products for the Control of Scaphoideus titanus in Vineyards: A Summary of Five-Year Field Trials. Insects 2026, 17, 83. https://doi.org/10.3390/insects17010083
Prazaru SC, Forlin L, Cera L, D’Ambrogio L, Pozzebon A, Duso C. Natural Products for the Control of Scaphoideus titanus in Vineyards: A Summary of Five-Year Field Trials. Insects. 2026; 17(1):83. https://doi.org/10.3390/insects17010083
Chicago/Turabian StylePrazaru, Stefan Cristian, Luigi Forlin, Leonardo Cera, Lisa D’Ambrogio, Alberto Pozzebon, and Carlo Duso. 2026. "Natural Products for the Control of Scaphoideus titanus in Vineyards: A Summary of Five-Year Field Trials" Insects 17, no. 1: 83. https://doi.org/10.3390/insects17010083
APA StylePrazaru, S. C., Forlin, L., Cera, L., D’Ambrogio, L., Pozzebon, A., & Duso, C. (2026). Natural Products for the Control of Scaphoideus titanus in Vineyards: A Summary of Five-Year Field Trials. Insects, 17(1), 83. https://doi.org/10.3390/insects17010083

