Properties of Galba, Avocado and Moringa Oils in Lubricant Formulations
Abstract
1. Introduction
2. Materials and Methods
2.1. Lubricant Formulations
2.2. Characterization Techniques
3. Results
3.1. Formulations: Graphite + Vegetable Oils
3.2. Vegetable Oils as Liquid Additive
3.2.1. Formulations: Vegetable Oil + Dodecane
3.2.2. Formulations: Graphite + Vegetable Oil + Dodecane
3.2.3. Formulations: Graphite + Oleic Acid (OA) + Dodecane
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviation s
| µ | Friction coefficient |
| GO | Galba oil |
| MO | Moringa oil |
| AvO | Avocado oil |
| OA | Oleic acid |
References
- Salih, N.; Salimon, J. A review on eco-friendly green biolubricants from renewable and sustainable plant oil sources. Biointerface Res. Appl. Chem. 2021, 11, 13303–13327. [Google Scholar] [CrossRef]
- Woma, T.Y.; Lawal, S.A.; Abdulrahman, A.S.; Olutoye, M.A.; Ojapah, M.M. Vegetable oil based lubricants: Challenges and prospects. Tribol. Online 2019, 14, 60–70. [Google Scholar] [CrossRef]
- Jesbin, K.S.; Mahipal, D. Evaluation of tribological characteristics of natural garlic oil as an additive in rubber seed oil. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1114, 012052. [Google Scholar] [CrossRef]
- García-Zapateiro, L.A.; Franco, J.M.; Valencia, C.; Delgado, M.A.; Gallegos, C. Viscous, thermal and tribological characterization of oleic and ricinoleic acids-derived estolides and their blends with vegetable oils. J. Ind. Eng. Chem. 2013, 19, 1289–1298. [Google Scholar] [CrossRef]
- Kumar, V.; Dhanola, A.; Garg, H.C.; Kumar, G. Improving the tribological performance of canola oil by adding CuO nanoadditives for steel/steel contact. Mater. Today Proc. 2020, 28, 1392–1396. [Google Scholar] [CrossRef]
- Pumpuang, A.; Klinkaew, N.; Yoeng, K.; Hin, L.; Maneedaeng, A.; Sukjit, E. The effect of various feedstock alkyl esters on fuel lubrication and properties. Clean. Eng. Technol. 2025, 26, 100942. [Google Scholar] [CrossRef]
- Sanjurjo, C.; Rodríguez, E.; Viesca, J.L.; Battez, A.H. Influence of Molecular Structure on the Physicochemical and Tribological Properties of Biolubricants: A Review. Lubricants 2023, 11, 380. [Google Scholar] [CrossRef]
- Bahari, A.; Lewis, R.; Slatter, T. Friction and wear response of vegetable oils and their blends with mineral engine oil in a reciprocating sliding contact at severe contact conditions. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2018, 232, 244–258. [Google Scholar] [CrossRef]
- Sahoo, R.R.; Biswas, S.K. Frictional response of fatty acids on steel. J. Colloid. Interface Sci. 2009, 333, 707–718. [Google Scholar] [CrossRef] [PubMed]
- Reeves, C.J.; Menezes, P.L.; Jen, T.C.; Lovell, M.R. The influence of fatty acids on tribological and thermal properties of natural oils as sustainable biolubricants. Tribol. Int. 2015, 90, 123–134. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Yang, S.; Yi, C.; Liu, T.; Zhang, R.; Jia, D.; Peng, S.; Yang, Q. Prediction of Lubrication Performances of Vegetable Oils by Genetic Functional Approximation Algorithm. Lubricants 2024, 12, 226. [Google Scholar] [CrossRef]
- Campen, S.; Green, J.; Lamb, G.; Atkinson, D.; Spikes, H. On the increase in boundary friction with sliding speed. Tribol. Lett. 2012, 48, 237–248. [Google Scholar] [CrossRef]
- Crespo, A.; Morgado, N.; Mazuyer, D.; Cayer-Barrioz, J. Effect of Unsaturation on the Adsorption and the Mechanical Behavior of Fatty Acid Layers. Langmuir 2018, 34, 4560–4567. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Xu, J.; Jin, Z.; Prakash, B.; Hu, Y. A review of recent advances in tribology. Friction 2020, 8, 221–300. [Google Scholar] [CrossRef]
- Wood, M.H.; Casford, M.T.; Steitz, R.; Zarbakhsh, A.; Welbourn, R.J.L.; Clarke, S.M. Comparative Adsorption of Saturated and Unsaturated Fatty Acids at the Iron Oxide/Oil Interface. Langmuir 2016, 32, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Siniawski, M.T.; Saniei, N.; Adhikari, B.; Doezema, L.A. Influence of fatty acid composition on the tribological performance of two vegetable-based lubricants. J. Synth. Lubr. 2007, 24, 101–110. [Google Scholar] [CrossRef]
- Kasar, A.K.; Reeves, C.J.; Menezes, P.L. Enhancing the Tribological Performance of Avocado Oil With Solid Lubricant Additives: A Fractal Dimension Analysis. J. Tribol. 2025, 147, 091121. [Google Scholar] [CrossRef]
- Shafi, W.K.; Raina, A.; Ul Haq, M.I. Tribological performance of avocado oil containing copper nanoparticles in mixed and boundary lubrication regime. Ind. Lubr. Tribol. 2018, 70, 865–871. [Google Scholar] [CrossRef]
- Nomède-Martyr, N.; Bilas, P.; Mathieu, G.; Bercion, Y.; Joseph, H.; Thomas, P. Moringa Oil and Carbon Phases of Different Shapes as Additives for Lubrication. Lubricants 2024, 12, 358. [Google Scholar] [CrossRef]
- Nomède-Martyr, N.; Vitulin, M.; Joseph, H.; Thomas, P. Moringa oil with graphite and hexagonal boron nitride particles as additives for lubrication. Diam. Relat. Mater. 2022, 124, 108930. [Google Scholar] [CrossRef]
- Saka, A.; Abor, T.K.; Okafor, A.C.; Okoronkwo, M.U. Thermo-Rheological and Tribological Properties of Low- and High-oleic Vegetable Oils as Sustainable Bio-based lubricants. RSC Sustain. 2025, 3, 1461–1476. [Google Scholar] [CrossRef]
- Silva-Alvarez, D.F.; Dominguez-Lopez, I.; Vidales Hurtado, M.A.; Gutierrez-Antonio, C.; Flores-Garay, K.A.; Garcia-Garcia, A.L. A review on the menagerie of green fluids and nanoparticles to develop sustainable biolubricant technologies. Environ. Technol. Innov. 2024, 33, 103532. [Google Scholar] [CrossRef]
- Mohd Salleh, Z.A.; Syahrullail, S.; Norzita, N.; Nurun Najwa, R. Friction study on chemically modified RBD PK oil as a potential renewable resource. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 127. [Google Scholar] [CrossRef]
- Berman, D. Plant-Based Oils for Sustainable Lubrication Solutions—Review. Lubricants 2024, 12, 300. [Google Scholar] [CrossRef]
- Nomede-Martyr, N.; Philippe, B.; Philippe, T.; Georges, M.; Laurence, R. Tribological performances of graphite and hexagonal boron nitride particles in the presence of liquid. J. Tribol. 2021, 143, 071401. [Google Scholar] [CrossRef]
- Pawar, R.V.; Hulwan, D.B.; Mandale, M.B. Recent advancements in synthesis, rheological characterization, and tribological performance of vegetable oil-based lubricants enhanced with nanoparticles for sustainable lubrication. J. Clean. Prod. 2022, 378, 134454. [Google Scholar] [CrossRef]
- Fry, B.M.; Chui, Y.; Moody, G.; Wong, J.S.S. Interactions between organic friction modifier additives. Tribol. Int. 2020, 151, 106438. [Google Scholar] [CrossRef]
- Yu, H.; Chen, H.; Zheng, Z.; Qiao, D.; Feng, D.; Gong, Z.; Dong, G. Effect of functional groups on tribological properties of lubricants and mechanism investigation. Friction 2023, 11, 911–926. [Google Scholar] [CrossRef]
- Hamnas, A.; Unnikrishnan, G. Bio-lubricants from vegetable oils: Characterization, modifications, applications and challenges—Review. Renew. Sustain. Energy Rev. 2023, 182, 113413. [Google Scholar] [CrossRef]
- Saini, V.; Pond, L.; Uhryn, J.; Kalayil, A.; Tomar, A.; Subramanian, K.; Trifkovic, M.; Egberts, P. Shear-dependent tribological behavior of oleic acid as a sustainable lubricant additive in oils and nano-greases. Wear 2025, 570, 205932. [Google Scholar] [CrossRef]
- Adou, A.I.; Brelle, L.; Marote, P.; Sylvestre, M.; Cebriàn-Torrejòn, G.; Nomede-Martyr, N. Physicochemical Properties of Coconut and Waste Cooking Oils for Biofuel Production and Lubrication. Fuels 2025, 6, 57. [Google Scholar] [CrossRef]








| Fatty Acid Methyl Ester | Galba | Avocado | Moringa |
|---|---|---|---|
| Oléic C18:1 | 47.4% | 45% | 75.33% |
| Palmitic C16:0 | 11.55% | 15% | 6.09% |
| Linoleic C18:2 | 24.63% | 10% | 0.90% |
| Palmitoleic C16:1 | 0.23% | 5% | 1.94% |
| Linolenic C18:3 | 0.27% | 0.5% | 0.29% |
| Stearic C18:0 | 13.13% | 0.4% | 3.77% |
| Formulations | wt% of Graphite | wt% of Oil | Lubricant Base | |
|---|---|---|---|---|
| Formulation 1 | Graphite + oil | 0.5, 1 | Dodecane, vegetable oils | |
| Formulation 2 | Vegetable oil + dodecane | 0.5, 1, 2, 3 | Dodecane | |
| Formulation 3 | Graphite + vegetable oil + dodecane | 1 | 1, 2, 3 | Dodecane |
| Graphite + oleic acid + dodecane | 1 | 0.5, 1, 2, 3 | Dodecane | |
| Oils | Friction Coefficient (µ) | Trace Measured on the Ball (µm) | Viscosity ν (mPa·s−1) |
|---|---|---|---|
| Galba oil (GO) | 0.110 ± 0.005 | 166 ± 10 | 103.50 ± 0.15 |
| Moringa oil (MO) | 0.08 ± 0.005 | 150 ± 10 | 87.00 ± 0.01 |
| Avocado oil (AvO) | 0.100 ± 0.005 | 157 ± 10 | 64.00 ± 0.50 |
| Dodecane | 0.45 ± 0.01 | 280 ± 10 | 1.383 ± 0.01 |
| Oleic acid (OA) | 0.100 ± 0.005 | 142 ± 2 | 113.00 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sophie, E.; Blathase, A.; Thomas, P.; Bercion, Y.; Bilas, P.; Nomède-Martyr, N. Properties of Galba, Avocado and Moringa Oils in Lubricant Formulations. Lubricants 2026, 14, 6. https://doi.org/10.3390/lubricants14010006
Sophie E, Blathase A, Thomas P, Bercion Y, Bilas P, Nomède-Martyr N. Properties of Galba, Avocado and Moringa Oils in Lubricant Formulations. Lubricants. 2026; 14(1):6. https://doi.org/10.3390/lubricants14010006
Chicago/Turabian StyleSophie, Emeline, Ashaina Blathase, Philippe Thomas, Yves Bercion, Philippe Bilas, and Nadiège Nomède-Martyr. 2026. "Properties of Galba, Avocado and Moringa Oils in Lubricant Formulations" Lubricants 14, no. 1: 6. https://doi.org/10.3390/lubricants14010006
APA StyleSophie, E., Blathase, A., Thomas, P., Bercion, Y., Bilas, P., & Nomède-Martyr, N. (2026). Properties of Galba, Avocado and Moringa Oils in Lubricant Formulations. Lubricants, 14(1), 6. https://doi.org/10.3390/lubricants14010006

