Microstructure, Phase Components, and Tribological Properties of Al65Cu20Fe15 Quasicrystal Coatings Deposited by HVOF
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Morphology of the Coatings
3.2. EDS Line Scanning
3.3. Point Analysis of the Coating Cross-Sections and E-Mapping Analysis
3.4. XRD Analysis
3.5. Tribological Performance
3.5.1. Friction Coefficient
3.5.2. Analysis of Wear
3.6. Microhardness of the Coating
4. Conclusions
- SEM analysis of the microstructure revealed that increasing the air pressure to 2.3 bar leads to the formation of a denser and more uniform coating structure, characterized by low porosity and a homogeneous distribution of elements.
- These morphological features, in turn, correlated with the phase composition identified by X-ray diffraction analysis: the formation of Al78Cu48Fe14 and Al0.5Fe1.5 phases, particularly at 2.3 bar, contributed to enhanced adhesion and corrosion resistance of the coating.
- Tribological tests using the “ball-on-disk” configuration confirmed that the presence of these phases positively affects the mechanical properties of the coating: the minimum wear track width (902 µm) was recorded at an air pressure of 2.3 bar. This indicates increased wear resistance and mechanical strength, which are directly linked to the phase stability and refined microstructure achieved through the optimized spraying conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yeong-Ho, S.; Baek, S.H.; Kim, B.K.; Hwang, J.H.; Lee, J.H.; Song, G.D. Comparison of Durability and Gamma-Ray Shielding Performance of High-Velocity Oxygen Fuel Tungsten Carbide-Based Coatings on Cold-Rolled Steel Surface. Crystals 2025, 15, 21. [Google Scholar] [CrossRef]
- Nie, H.; Li, Z.; Zhou, H.; Wu, J.; Wen, G.; Li, Y. Study on the Wear Resistance and Mechanism of HVOF-Sprayed WC10Co4Cr Coatings. Surf. Coat. Technol. 2024, 494, 131368. [Google Scholar] [CrossRef]
- Kumar, V.; Verma, R. Effect of GNP and Laser-Surface Texturing on HVOF Sprayed WC10Co4Cr Coatings for High-Wear Resistance. Tribol. Int. 2023, 178, 108057. [Google Scholar] [CrossRef]
- Yang, X.; Lin, H.; Chen, Y.; He, Y.; Shen, Z. Effect of AlTiN Coating Structure on the Cutting Performance of Cemented Carbide PCB Microdrills. Coatings 2025, 15, 520. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, M.; Meng, X.; Peng, X. Effects of Laser Bionic Textures and Diamond-Like Carbon Coatings on Tribological Properties of CuAl10Fe5Ni5 Under Oil Lubrication. Coatings 2025, 15, 446. [Google Scholar] [CrossRef]
- Rabadzhiyska, S.; Dechev, D.; Ivanov, N.; Ivanova, T.; Strijkova, V.; Katrova, V.; Valkov, S. Wear and Corrosion Resistance of ZrN Coatings Deposited on Ti6Al4V Alloy for Biomedical Applications. Coatings 2024, 14, 1434. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, S.; Singh, J.P.; Gulati, P.; Singh, G.; Dwivedi, S.P.; Li, C.; Kumar, A.; Tag-Eldin, E.M.; Abbas, M. Enhancement in Wear-Resistance of 30MNCRB5 Boron Steel-Substrate Using HVOF Thermal Sprayed WC–10% Co–4% Cr Coatings: A Comprehensive Research on Microstructural, Tribological, and Morphological Analysis. J. Mater. Res. Technol. 2023, 27, 1072–1096. [Google Scholar] [CrossRef]
- Mishra, B.B.; Nautiyal, H. Frictional and Wear Behavior of Cr3C2-NiCr Coating on AISI-304 Stainless Steel. Adv. Mater. Process. Technol. 2022, 8, 4007–4017. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, Y.; Zhang, X.; Zhao, Z.; Yan, Q. The Tribological Behavior of Cu-Based Brake Materials against Cr3C2-NiCr Coated Steel Disks with Varying Roughness. Tribol. Trans. 2024, 68, 77–89. [Google Scholar] [CrossRef]
- Ge, Y.; Xi, H.; Kong, D. Structural Evolution, Phase Transition and High-Temperature Tribological Properties of Cr3C2 Reinforced WC-10Co4Cr Coatings by Laser Cladding. Ind. Lubr. Tribol. 2025, 77, 582–591. [Google Scholar] [CrossRef]
- Hao, K.; Huang, J.; Liu, H.; Wang, Z.; Qiu, Z.; Zheng, Z.; Zeng, D. Improving Thermal Shock and Oxidation Resistance of Cr3C2/WC-NiCr Cermet Coating by Embedding Large NiCrAlY Superalloy Particles. Ceram. Int. 2024, 50, 54737–54752. [Google Scholar] [CrossRef]
- Zhu, L.; Soto-Medina, S.; Cuadrado-Castillo, W.; Hennig, R.G.; Manuel, M.V. New Experimental Studies on the Phase Diagram of the Al-Cu-Fe Quasicrystal-Forming System. Mater. Des. 2020, 185, 108186. [Google Scholar] [CrossRef]
- Dubois, J.M. Properties and Applications of Quasicrystals and Complex Metallic Alloys. Chem. Soc. Rev. 2012, 41, 6760–6777. [Google Scholar] [CrossRef] [PubMed]
- Kušter, M.; Kovač, J.; Samardžija, Z.; Komelj, M.; Semsari Parapari, S.; Podlogar, M.; Dubois, J.M.; Šturm, S. Impact of Tuned Oxidation on the Surface Energy of Sintered Samples Produced from Atomised B-Doped Al–Cu–Fe Quasicrystalline Powders. Crystals 2023, 13, 859. [Google Scholar] [CrossRef]
- Samavat, F.; Tavakoli, M.H.; Habibi, S.; Jaleh, B.; Ahmad, P.T. Quasicrystals. J. Alloys Compd. 2012, 2, 7–14. [Google Scholar] [CrossRef]
- Mora, J.; García, P.; Muelas, R.; Agüero, A. Hard Quasicrystalline Coatings Deposited by HVOF Thermal Spray to Reduce Ice Accretion in Aero-Structures Components. Coatings 2020, 10, 290. [Google Scholar] [CrossRef]
- Yang, Q.; Dolatabadi, A.; Golovin, K. Durable Icephobic and Erosion Resistant Coatings Based on Quasicrystals; SAE Technical Paper 2023-01-1455; SAE International: Warrendale, PA, USA, 2023. [Google Scholar] [CrossRef]
- Fleury, E.; Kim, Y.C.; Kim, J.S.; Kim, D.H.; Kim, W.T.; Ahn, H.S.; Lee, S.M. Comparative Research of the Tribological Behavior of Thermal Sprayed Quasicrystalline Coating Layers. J. Alloys Compd. 2002, 342, 321–325. [Google Scholar] [CrossRef]
- Silva Guedes de Lima, B.A.; Medeiros Gomes, R.; Guedes de Lima, S.J.; Dragoe, D.; Barthes-Labrousse, M.G.; Kouitat-Njiwa, R.; Dubois, J.M. Self-Lubricating, Low-Friction, Wear-Resistant Al-Based Quasicrystalline Coatings. Sci. Technol. Adv. Mater. 2016, 17, 71–79. [Google Scholar] [CrossRef]
- Rahadilov, B.K.; Kurbanbekov, S.R.; Seytov, B.; Muktanova, N.; Baltabayeva, D.E.; Katpayeva, K. Teoreticheskiye issledovaniya i resheniya optimal’nykh rezhimov protsessa termicheskogo napyleniya HVOF dlya pokrytiya Cr3C2-NiCr. Vestnik NYaTs RK 2023, 4, 22–31. [Google Scholar]
- Rahadilov, B.K.; Muktanova, N.; Kakimzhanov, D.N. Vliyanie var’irovaniya rasstoyaniya napyleniya na strukturno-fazovoye sostoyaniye i mekhanotribologicheskiye svoystva pokrytiy na osnove 86WC-10Co-4Cr, poluchennykh metodom HVOF. Vestnik NYaTs RK 2024, 3, 91–104. [Google Scholar]
- Panteleenko, F.I.; Zhen, P. Progressivnyye tekhnologii lazernoy naplavki i gazotermicheskogo napyleniya. Liteyo i Metallurgiya 2024, 3, 61–65. [Google Scholar]
- Wolf, W.; Koga, G.Y.; Schulz, R.; Savoie, S.; Kiminami, C.S.; Bolfarini, C.; Botta, W.J. Wear and Corrosion Performance of Al-Cu-Fe-(Cr) Quasicrystalline Coatings Produced by HVOF. J. Therm. Spray Technol. 2020, 29, 1195–1207. [Google Scholar] [CrossRef]
- Souza, T.A.; Silva, D.D.; Júnior, F.W.; Feitosa, F.R.; Gomes, R.M.; Lima, B.A. Analysis of the Surface Properties of Al–Cu–Fe–B and Al–Co–Cu Quasicrystalline Coatings Produced by HVOF. MRS Commun. 2021, 11, 873–878. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Iefimov, M.O.; Mordyuk, B.N. Protection of AA2024 Alloy against Wear and Corrosion by HVAF Sprayed AlCuFe Coating. Surf. Eng. 2023, 39, 532–540. [Google Scholar] [CrossRef]
- GOST 1435-99; Bars, Strips and Reels of Tool Unalloyed Steel. General Specifications. Russian Technical Standard: Moscow, Russia, 2001.
- ASTM G99-17; Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus. ASTM: West Conshohocken, PA, USA, 2017.
- Karpov, I.V.; Ushakov, A.V.; Lepeshev, A.A.; Fedorov, L.Y.; Demin, V.G.; Shaikhadinov, A.A.; Karpova, O.N. Fazovyy sostav, makro- i mikrostruktury kvazikristallicheskikh poroshkov plazmokhimicheskogo sinteza. Zh. Tekh. Fiz. 2017, 87, 741–745. [Google Scholar] [CrossRef]
- Chugunov, D.B.; Osipov, A.K.; Kalmykov, K.B.; Meshkov, L.L. Osobennosti formirovaniya kvazikristallicheskoy fazy v litykh splavakh sistemy Al–Cu–Fe. Vestnik Moskovskogo Universiteta. Seriya 2. Khimiya 2015, 56, 98–105. [Google Scholar]
- Wang, J.; He, Y.; Yang, Z. Microstructure and Properties of Al–Cu–Fe–Ce Quasicrystalline-Reinforced 6061 Aluminum Matrix Composites after Aging. Coatings 2024, 14, 372. [Google Scholar] [CrossRef]
- Suárez, M.A.; Esquivel, R.; Alcántara, J.; Dorantes, H.; Chávez, J.F. Effect of Chemical Composition on the Microstructure and Hardness of Al–Cu–Fe Alloy. Mater. Charact. 2011, 62, 917–923. [Google Scholar] [CrossRef]
- Huttunen-Saarivirta, E.; Turunen, E.; Kallio, M. Influence of Cr Alloying on the Microstructure of Thermally Sprayed Quasicrystalline Al–Cu–Fe Coatings. Intermetallics 2003, 11, 879–891. [Google Scholar] [CrossRef]
- Li, L.; Bi, Q.; Yang, J.; Fu, L.; Wang, L.; Wang, S.; Liu, W. Large-Scale Synthesis of Al–Cu–Fe Submicron Quasicrystals. Scr. Mater. 2008, 59, 587–590. [Google Scholar] [CrossRef]
- Rukdee, S.; Friedrich, P.; Burwitz, V.; Hartner, G.; Muller, T.; Schmidt, T.; Dennerl, K. Calibration of Einstein Probe FXT-QM and FM at the PANTER X-ray Test Facility. Proc. SPIE Int. Conf. Space Opt.—ICSO 2023, 12777, 1441–1457. [Google Scholar] [CrossRef]
- Shalaeva, E.V.; Selyanin, I.O.; Smirnova, E.O.; Smirnov, S.V.; Novachek, D.D. Deformation Behavior and Structure of the i-Al–Cu–Fe Quasicrystalline Alloy in the Vicinity of a Nanoindenter Imprint. Phys. Solid State 2018, 60, 307–314. [Google Scholar] [CrossRef]
- Tan, C.W.; Djuansjah, J.R.P.; Idris, M.H.; Ali, W.F.F. Characterisation of Al65Cu20Fe15 Quasicrystal Alloy Synthesised via In-situ Casting under Standard Room Ambient and Argon Enriched Atmosphere. Int. J. Curr. Res. Sci. Eng. Technol. 2018, 1, 280. [Google Scholar] [CrossRef]
- Babilas, R.; Młynarek, K.; Łoński, W.; Łukowiec, D.; Kądziołka-Gaweł, M.; Czeppe, T.; Temleitner, L. Structural Characterization of Al65Cu20Fe15 Melt-Spun Alloy by X-ray, Neutron Diffraction, High-Resolution Electron Microscopy and Mössbauer Spectroscopy. Materials 2020, 14, 54. [Google Scholar] [CrossRef]
- Ovchinnikov, A.; Smetana, V.; Mudrin, A.V. Metallic alloys at the edge of complexity: Structural aspects, chemical bonding and physical properties. J. Phys. Condens. Matter 2020, 32, 243002. [Google Scholar] [CrossRef]
- Erkisi, A.; Surucu, G. The Investigation of DO3-Type Fe3M (M = Al, Ga, Si and Ge) Full-Heusler Alloys within First Principles Study. Politeknik Dergisi 2018, 21, 927–936. [Google Scholar] [CrossRef]
- Rakhadilov, B.; Satbayeva, Z.; Ramankulov, S.; Shektibayev, N.; Zhurerova, L.; Popova, N.; Sagdoldina, Z. Change of 0.34 Cr-1Ni-Mo-Fe Steel Dislocation Structure in Plasma Electrolyte Hardening. Materials 2021, 14, 1928. [Google Scholar] [CrossRef] [PubMed]
- Pougoum, F.; Martinu, L.; Klemberg-Sapieha, J.E.; Savoie, S.; Schulz, R. Wear Properties of Fe3Al-Based HVOF Coatings Strengthened with In-Situ Precipitated Nitride and Boride Particles. Surf. Coat. Technol. 2016, 307, 109–117. [Google Scholar] [CrossRef]
- Dubois, J.M.; Belin-Ferré, E. Friction and Solid-Solid Adhesion on Complex Metallic Alloys. Sci. Technol. Adv. Mater. 2014, 15, 034804. [Google Scholar] [CrossRef]
- Fleury, E.; Kim, Y.C.; Kim, J.S.; Ahn, H.S.; Lee, S.M.; Kim, W.T.; Kim, D.H. Sliding Friction and Wear Behavior of Al–Ni–Co–Si Quasicrystalline Coatings Deposited by the High-Velocity Oxy-Fuel Spraying Technique. J. Mater. Res. 2002, 17, 492–501. [Google Scholar] [CrossRef]
Element | C | Si | Mn | Ni | S | P | Cr | Cu | Fe |
---|---|---|---|---|---|---|---|---|---|
Mass fraction, % | 0.81–0.89 | 0.17–0.33 | 0.33–0.58 | up to 0.25 | up to 0.028 | up to 0.03 | up to 0.2 | up to 0.25 | ~97 |
Sample | Nozzle-to-Substrate Distance (mm) | Propane Pressure (bar) | Air Pressure (bar) | Oxygen Pressure (bar) |
---|---|---|---|---|
Sample a | 350 | 2 | 2.1 | 2.1 |
Sample b | 350 | 2 | 2.3 | 2.1 |
Sample c | 350 | 2 | 1.9 | 2.1 |
№ | Al | Cu | Fe | O | C |
---|---|---|---|---|---|
Sample a | 55.63 | 9.06 | 33.66 | 1.65 | - |
Sample b | 33.65 | 13.34 | 31.68 | 1.12 | 20.21 |
Sample c | 45.00 | 33.73 | 21.27 | - | - |
1 | 2 | 3 | 4 | 5 | Mean Hardness | Standard Deviation | |
---|---|---|---|---|---|---|---|
Initial | 370 | 380 | 360 | 355 | 375 | 368 | 10.37 |
Sample a | 734 | 720 | 710 | 730 | 720 | 722.8 | 9.45 |
Sample b | 780 | 788 | 798 | 770 | 800 | 787.2 | 12.54 |
Sample c | 729 | 730 | 710 | 720 | 725 | 722.8 | 8.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurbanbekov, S.; Gaipov, T.; Saidakhmetov, P.; Tazhibayev, A.; Ramankulov, S.; Bekbayev, S.; Abdimutalip, A.; Baltabayeva, D. Microstructure, Phase Components, and Tribological Properties of Al65Cu20Fe15 Quasicrystal Coatings Deposited by HVOF. Lubricants 2025, 13, 297. https://doi.org/10.3390/lubricants13070297
Kurbanbekov S, Gaipov T, Saidakhmetov P, Tazhibayev A, Ramankulov S, Bekbayev S, Abdimutalip A, Baltabayeva D. Microstructure, Phase Components, and Tribological Properties of Al65Cu20Fe15 Quasicrystal Coatings Deposited by HVOF. Lubricants. 2025; 13(7):297. https://doi.org/10.3390/lubricants13070297
Chicago/Turabian StyleKurbanbekov, Sherzod, Tulkinzhon Gaipov, Pulat Saidakhmetov, Alibek Tazhibayev, Sherzod Ramankulov, Sattarbek Bekbayev, Arai Abdimutalip, and Dilnoza Baltabayeva. 2025. "Microstructure, Phase Components, and Tribological Properties of Al65Cu20Fe15 Quasicrystal Coatings Deposited by HVOF" Lubricants 13, no. 7: 297. https://doi.org/10.3390/lubricants13070297
APA StyleKurbanbekov, S., Gaipov, T., Saidakhmetov, P., Tazhibayev, A., Ramankulov, S., Bekbayev, S., Abdimutalip, A., & Baltabayeva, D. (2025). Microstructure, Phase Components, and Tribological Properties of Al65Cu20Fe15 Quasicrystal Coatings Deposited by HVOF. Lubricants, 13(7), 297. https://doi.org/10.3390/lubricants13070297