Study of the Plastic Behavior of Rough Bearing Surfaces Using a Half-Space Contact Model and the Fatigue Life Estimation According to the Fatemi–Socie Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Contact Models
2.2. Comparison Half-Space vs Hertz Theory
3. Fatemi–Socie Fatigue Life Approach
3.1. Determination of the Damage Parameter in the Fatemi–Socie Model
3.2. Maximum Normal Stress in the Fatemi–Socie Model for the Rolling Contact Problem
4. Experimental and Surface Topography Measurement Setup
4.1. Specimen Manufacturing
4.2. Bearing Test Rig
4.3. Surface Measurement
5. Simulations Results
5.1. Analysis of the Tribological Behaviour of the Measured Surfaces in Manufactured and In Run-In (after 107 Revolutions) State by Means of Elastic Contact Simulation
5.2. Simulation of the Plastic Behavior in the Surface-Near Area
5.2.1. Predicting Surface Change Using Elasto-Plastic Contact Simulation
5.2.2. Simulative vs. Experimental Residual Stresses
5.3. Fatigue Life Estimation Using Fatemi-Socie Fatigue Approach
6. Summary & Conclusions
6.1. Summary
6.2. Conclusions
7. Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| General abbrevations | |
| ; | Roller diameter; Inner ring diameter |
| FE | Finite Element |
| IR | Inner ring |
| Effective contact length | |
| Length of the computational domain in axial direction (x); and circumferential direction (y) | |
| MBS | Multibody simulation |
| OR | Outer ring |
| RE | Rolling element |
| Discretised inner ring volume area (calculation volume); critical volume element in discretised inner ring volume area | |
| 𝜓; | Angular position in the load zone; on entry, and exit of the load zone |
| Equivalent stress; start yield stress | |
| Material parameters (elasto-plastic) | |
| B; C; n | Plastic material parameters |
| ; | Elastic material parameters |
| Material parameters (Fatemi–Socie Model) | |
| Fatigue exponent for pure torsional loading | |
| Ductility exponent for pure torsional loading | |
| Shear modulus | |
| Nondimensional material constant (normal stress sensitivity coefficient) | |
| Critical number of load cycles | |
| Equivalent shear strain amplitude | |
| Maximum shear strain amplitude in the critical plane | |
| Cyclic ductility coefficient for pure torsional loading | |
| Cyclic fatigue coefficient for pure torsional loading | |
| Yield stress | |
| Max. normal stress perpendicular to the critical plane | |
References
- ISO/TS 16281; Rolling Bearings—Methods for Calculating the Modified Reference Rating life for Universally Loaded Bearings. Beuth Verlag: Berlin, Germany, 2008.
- Brown, M.W.; Miller, K.J. A Theory for Fatigue Failure under Multiaxial Stress-Strain Conditions. Proc. Inst. Mech. Eng. 1973, 187, 745–755. [Google Scholar] [CrossRef]
- Sauvage, P.; Jacobs, G.; Sous, C.; Lüneburg, B.; Becker, D.; Pantke, K. On an Extension of the Fatemi and Socie Equation for Rolling Contact in Rolling Bearings. In Proceedings of the 7th International Conference on Fracture Fatigue and Wear, Ghent, Belgium, 9–10 July 2018; Abdel Wahab, M., Ed.; Springer: Singapore, 2019; pp. 438–457. ISBN 978-981-13-0410-1. [Google Scholar]
- Wächter, M.; Esderts, A. On the estimation of cyclic material properties—Part 1: Quality of known estimation methods. Mater. Test. 2018, 60, 945–952. [Google Scholar] [CrossRef]
- Wächter, M.; Esderts, A. On the estimation of cyclic material properties—Part 2: Introduction of a new estimation method. Mater. Test. 2018, 60, 953–959. [Google Scholar] [CrossRef]
- Polonsky, I.A.; Keer, L.M. A numerical method for solving rough contact problems based on the multi-level multi-summation and conjugate gradient techniques. Wear 1999, 231, 206–219. [Google Scholar] [CrossRef]
- Polonsky, I.A.; Keer, L.M. Fast Methods for Solving Rough Contact Problems: A Comparative Study. J. Tribol. 2000, 122, 36–41. [Google Scholar] [CrossRef]
- Jacq, C. Limite d’Endurance et Durée de Vie en Fatigue de Roulement du 32CrMoV13 Nitruré en Présence d’Indentations. Ph.D. Thesis, L’Institut National des Sciences Appliquées de Lyon, Lyon, France, 2001. [Google Scholar]
- Jacq, C.; Nelias, D.; Lormand, G.; Girodin, D. Development of a Three-Dimensional Semi-Analytical Elastic-Plastic Contact Code. J. Tribol. 2002, 124, 653–667. [Google Scholar] [CrossRef]
- Juettner, M.; Bartz, M.; Tremmel, S.; Wartzack, S. On the Transient Effects at the Beginning of 3D Elastic-Plastic Rolling Contacts for a Circular Point Contact Considering Isotropic Hardening. Lubricants 2022, 10, 47. [Google Scholar] [CrossRef]
- Dahiwal, R. Entwicklung eines Berechnungsmoduls zur Dynamiksimulation und Betriebsanalyse von Zylinderrollenlagern unter Berücksichtigung der Umgebungskonstruktion in Simpack. In Forschungsvorhaben Nr. 625 II: Abschlussbericht—Forschungsheft 1234; FVA Forschungsvereinigung Antriebstechnik e.V.: Frankfurt am Main, Germany, 2017. [Google Scholar]
- Aul, V. Kontaktmodelle zur Dynamischen Simulation Vollrolliger Zylinderrollenlager. PhD Thesis, TU Kaiserslautern, Kaiserslautern, Germany, 2014. [Google Scholar]
- Kiekbusch, T. Strategien zur Dynamischen Simulation von Wälzlagern. Ph.D. Thesis, TU Kaiserslautern, Kaiserslautern, Germany, 2017. [Google Scholar]
- Boucly, V.; Ne’lias, D.; Liu, S.; Wang, Q.J.; Keer, L.M. Contact Analyses for Bodies With Frictional Heating and Plastic Behavior. J. Tribol. 2005, 127, 355–364. [Google Scholar] [CrossRef]
- Swift, H.W. Plastic instability under plane stress. J. Mech. Phys. Solids 1952, 1, 1–18. [Google Scholar] [CrossRef]
- Lamagnere, P.; Fougeres, R.; Lormand, G.; Vincent, A.; Girodin, D.; Dudragne, G.; Vergne, F. A Physically Based Model for Endurance Limit of Bearing Steels. J. Tribol. 1998, 120, 421–426. [Google Scholar] [CrossRef]
- Chaise, T. Mechanical Simulation Using a Semi Analytical Method: From Elasto-Plastic Rolling Contact to Multiple Impacts. Ph.D. Thesis, l’Institut National des Sciences Appliquées de Lyon, Lyon, France, 2012. [Google Scholar]
- Gerberich, W.W.; Tymiak, N.I.; Grunlan, J.C.; Horstemeyer, M.F.; Baskes, M.I. Interpretations of Indentation Size Effects. J. Appl. Mech. 2002, 69, 433–442. [Google Scholar] [CrossRef]
- Fatemi, A.; Socie, D.F. A Critical Plane Approach to Multiaxial Fatigue Damage Including Out-of-Phase Loading. Fat. Frac. Eng. Mat. Struct. 1988, 11, 149–165. [Google Scholar] [CrossRef]
- Yu, Z.-Y.; Zhu, S.-P.; Liu, Q.; Liu, Y. Multiaxial Fatigue Damage Parameter and Life Prediction without Any Additional Material Constants. Materials 2017, 10, 923. [Google Scholar] [CrossRef] [PubMed]
- Boller, C.; Seeger, T. Materials Data for Cyclic Loading; Elsevier: Amsterdam, The Netherlands, 1987; ISBN 0-444-42875-5. [Google Scholar]
- Zhu, S.-P.; Liu, Q.; Peng, W.; Zhang, X.-C. Computational-experimental approaches for fatigue reliability assessment of turbine bladed disks. Int. J. Mech. Sci. 2018, 142–143, 502–517. [Google Scholar] [CrossRef]
- Socie, D. Multiaxial Fatigue, 1st ed.; SAE International: Warrendale, PA, USA, 2000; ISBN 0-7680-0453-5. [Google Scholar]
- Neubauer, T. Betriebs- und Lebensdauerverhalten Hartgedrehter und Festgewalzter Zylinderrollenlager. Ph.D. Thesis, Gottfried Wilhelm-Leibniz-Universität, Hannover, Germany, 2016. [Google Scholar]
- DIN EN ISO 683-17; Für Eine Wärmebehandlung Bestimmte Stähle, Legierte Stähle und Automatenstähle—Teil 17: Wälzlagerstähle. Beuth Verlag: Berlin, Germany, 2015.
- Rüth, L.; Foko Foko, F.; Sauer, B.; Ostermayer, P.; Blinn, B.; Beck, T. Experimental and simulative investigations into the fatigue life of cylindrical roller bearings under mixed lubrication with differently finished inner rings. In Proceedings of the STLE Annual Meeting, Orlando, FL, USA, 15–19 May 2022. [Google Scholar]
- Keferstein, C.P.; Marxer, M.; Bach, C. Fertigungsmesstechnik: Alles zu Messunsicherheit konventioneller Messtechnik und Multisensorik, 9. Auflage; Springer: Wiesbaden, Germany, 2018; ISBN 978-3-658-17755-3. [Google Scholar]
- DIN 25178-2; Geometrische Produktspezifikation (GPS)—Oberflächenbeschaffenheit: Flächenhaft—Teil 2: Begriffe und Oberflächen-Kenngrößen. Beuth Verlag: Berlin, Germany, 2012.
- Haitjema, H. Uncertainty in measurement of surface topography. Surf. Topogr. Metrol. Prop. 2015, 3, 35004. [Google Scholar] [CrossRef]
- Giusca, C.L.; Claverley, J.D.; Sun, W.; Leach, R.K.; Helmli, F.; Chavigner, M.P. Practical estimation of measurement noise and flatness deviation on focus variation microscopes. CIRP Ann. 2014, 63, 545–548. [Google Scholar] [CrossRef]
- Podulka, P. Selection of Methods of Surface Texture Characterisation for Reduction of the Frequency-Based Errors in the Measurement and Data Analysis Processes. Sensors 2022, 22, 791. [Google Scholar] [CrossRef] [PubMed]
- DIN 55303-7; Statistische Auswertung von Daten—Teil 7: Schätz—und Testverfahren bei Zweiparametrischer Weibullverteilung. Beuth Verlag: Berlin, Germany, 1996.
- DIN EN 61649; Weibull Analyse. Beuth Verlag: Berlin, Germany, 2009.
- Seifried, A. Zur Statistik in der Betriebsfestigkeit. Mater. Tech. 2004, 35, 93–111. [Google Scholar] [CrossRef]




















| Macro-Variables | Micro-Variables | ||
|---|---|---|---|
| /mm | 10 | /mm | 0.6 |
| /mm | 49.98 | /mm | 0.6 |
| /mm | 9.7 | ||
| /N | 4986 | /N | 310 |
| Parameters | Value |
|---|---|
| /MPa | 945 |
| /- | 40 |
| /- | 0.121 |
| Parameters | Value |
|---|---|
| 3.1148 | |
| −0.097 | |
| −0.52 | |
| Validity range | MPa |
| Parameters | Value |
|---|---|
| /MPa | 1953 |
| /MPa | 1656 |
| /MPa | 80,769 |
| /− | 0.148 |
| /− | −0.097 |
| /− | −0.52 |
| Parameters | Unit | Value |
|---|---|---|
| Magnification | - | 20 |
| Measuring field | μm | 800 × 800 |
| Numerical aperture | - | 0.6 |
| Working distance | mm | 0.9 |
| Resolution in depth direction | nm | 4 |
| Resolution in the plane | μm | 1.6 |
| Manufactured State | Run-In State (107. rev.) | |||
|---|---|---|---|---|
| /μm | /μm | /μm | /μm | |
| rough ground | 0.413 ± 0.001 | 0.392 ± 0.003 | 0.329 ± 0.001 | 0.310 ± 0.001 |
| hard turned | 0.168 ± 0.002 | 0.163 ± 0.004 | 0.113 ± 0.003 | 0.091 ± 0.000 |
| fine ground | 0.078 ± 0.001 | 0.061 ± 0.002 | 0.092 ± 0.002 | 0.083 ± 0.002 |
| Manufactured State | Run-In State (107 rev.) | |
|---|---|---|
| / | / | |
| rough ground | 0.0883 | 0.1088 |
| hard turned | 0.1265 | 0.2037 |
| fine ground | 0.1275 | 0.1896 |
| Manufactured State | Run-In State (107. Rev.) | |||
|---|---|---|---|---|
| Nvol | Vol / % | Nvol | Vol / % | |
| rough ground | 434,817 | 8.95 | 433,501 | 8.92 |
| hard turned | 81,493 | 1.68 | 477 | 0.0098 |
| fine ground | 46,515 | 0.9581 | 491 | 0.0101 |
| Rough Ground | Hard Turned | Fine Ground | ||||
|---|---|---|---|---|---|---|
| elastic | elastic-plastic | elastic | elastic-plastic | elastic | elastic-plastic | |
| /MPa | −1310 | −1379 | −1339 | −1406 | −1312 | 1380 |
| /MPa | −2193 | −2319 | −2319 | −2255 | −2117 | −2054 |
| /MPa | −3466 | −3477 | −3477 | −3476 | −3331 | −3327 |
| /MPa | −27 | −27 | −3 | −3 | −23 | −22 |
| /MPa | −59 | −59 | 48 | 48 | −210 | −210 |
| /MPa | 8 | 8 | 34 | 34 | −112 | −112 |
| Surfaces | |||||
|---|---|---|---|---|---|
| ideally smooth | 0.0027 | 722 | 95 | - | - |
| fine ground | 0.0028 | 381 | 50 | 28.9 | 49.0 |
| hard turned | 0.0028 | 355 | 47 | 27.7 | 78.0 |
| rough ground | 0.0030 | 234 | 30 | 23.7 | 27.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foko Foko, F.; Rüth, L.; Koch, O.; Sauer, B. Study of the Plastic Behavior of Rough Bearing Surfaces Using a Half-Space Contact Model and the Fatigue Life Estimation According to the Fatemi–Socie Model. Lubricants 2023, 11, 133. https://doi.org/10.3390/lubricants11030133
Foko Foko F, Rüth L, Koch O, Sauer B. Study of the Plastic Behavior of Rough Bearing Surfaces Using a Half-Space Contact Model and the Fatigue Life Estimation According to the Fatemi–Socie Model. Lubricants. 2023; 11(3):133. https://doi.org/10.3390/lubricants11030133
Chicago/Turabian StyleFoko Foko, Flavien, Lukas Rüth, Oliver Koch, and Bernd Sauer. 2023. "Study of the Plastic Behavior of Rough Bearing Surfaces Using a Half-Space Contact Model and the Fatigue Life Estimation According to the Fatemi–Socie Model" Lubricants 11, no. 3: 133. https://doi.org/10.3390/lubricants11030133
APA StyleFoko Foko, F., Rüth, L., Koch, O., & Sauer, B. (2023). Study of the Plastic Behavior of Rough Bearing Surfaces Using a Half-Space Contact Model and the Fatigue Life Estimation According to the Fatemi–Socie Model. Lubricants, 11(3), 133. https://doi.org/10.3390/lubricants11030133

