Post-Operative Outcome Predictions in Vestibular Schwannoma Using Machine Learning Algorithms
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Skolnik, A.D.; Loevner, L.A.; Sampathu, D.M.; Newman, J.G.; Lee, J.Y.; Bagley, L.J.; Learned, K.O. Cranial Nerve Schwannomas: Diagnostic Imaging Approach. Radiographics 2016, 36, 1463–1477. [Google Scholar] [CrossRef]
- Bal, J.; Bruneau, M.; Berhouma, M.; Cornelius, J.F.; Cavallo, L.M.; Daniel, R.T.; Froelich, S.; Jouanneau, E.; Meling, T.R.; Messerer, M.; et al. Management of non-vestibular schwannomas in adult patients: A systematic review and consensus statement on behalf of the EANS skull base section. Part I: Oculomotor and other rare non-vestibular schwannomas (I, II, III, IV, VI). Acta Neurochir. 2022, 164, 285–297. [Google Scholar] [CrossRef]
- Reznitsky, M.; Petersen, M.M.B.S.; West, N.; Stangerup, S.E.; Cayé-Thomasen, P. Epidemiology of Vestibular Schwannomas—Prospective 40-Year Data from an Unselected National Cohort. Clin. Epidemiol. 2019, 11, 981–986. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Ahmed, A.K.; Bi, W.L.; Dawood, H.Y.; Iorgulescu, J.B.; Corrales, C.E.; Dunn, I.F.; Smith, T.R. Predicting Readmission and Reoperation for Benign Cranial Nerve Neoplasms: A Nationwide Analysis. World Neurosurg. 2019, 121, e223–e229. [Google Scholar] [CrossRef]
- Schackert, G.; Ralle, S.; Martin, K.D.; Reiss, G.; Kowalski, M.; Sobottka, S.B.; Hennig, S.; Podlesek, D.; Sandi-Gahun, S.; Juratli, T.A. Vestibular Schwannoma Surgery: Outcome and Complications in Lateral Decubitus Position Versus Semi-sitting Position—A Personal Learning Curve in a Series of 544 Cases over 3 Decades. World Neurosurg. 2021, 148, e182–e191. [Google Scholar] [CrossRef] [PubMed]
- Chiu, S.J.; Hickman, S.J.; Pepper, I.M.; Tan, J.H.Y.; Yianni, J.; Jefferis, J.M. Neuro-Ophthalmic Complications of Vestibular Schwannoma Resection: Current Perspectives. Eye Brain 2021, 13, 241–253. [Google Scholar] [CrossRef]
- Goshtasbi, K.; Abouzari, M.; Moshtaghi, O.; Maducdoc, M.; Lehrich, B.M.; Lin, H.W.; Djalilian, H.R. Risk Recall of Complications Associated with Vestibular Schwannoma Treatment. Otolaryngol. Head Neck Surg. 2019, 161, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Zanoletti, E.; Mazzoni, A.; Martini, A.; Abbritti, R.V.; Albertini, R.; Alexandre, E.; Baro, V.; Bartolini, S.; Bernardeschi, D.; Bivona, R. Surgery of the lateral skull base: A 50-year endeavour. Acta Otorhinolaryngol. Ital. 2019, 39 (Suppl. S1), S1–S146. [Google Scholar] [CrossRef]
- Goyal, A.; Ngufor, C.; Kerezoudis, P.; McCutcheon, B.; Storlie, C.; Bydon, M. Can machine learning algorithms accurately predict discharge to nonhome facility and early unplanned readmissions following spinal fusion? Analysis of a national surgical registry. J. Neurosurg. Spine 2019, 31, 568–578. [Google Scholar] [CrossRef] [PubMed]
- Merath, K.; Hyer, J.M.; Mehta, R.; Farooq, A.; Bagante, F.; Sahara, K.; Tsilimigras, D.I.; Beal, E.; Paredes, A.Z.; Wu, L.; et al. Use of Machine Learning for Prediction of Patient Risk of Postoperative Complications After Liver, Pancreatic, and Colorectal Surgery. J. Gastrointest. Surg. 2020, 24, 1843–1851. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Tsuzuki, T.; Akatsuka, J.; Ueki, M.; Morikawa, H.; Numata, Y.; Takahara, T.; Tsuyuki, T.; Tsutsumi, K.; Nakazawa, R.; et al. Automated acquisition of explainable knowledge from unannotated histopathology images. Nat. Commun. 2019, 10, 5642. [Google Scholar] [CrossRef]
- Chen, J.H.; Asch, S.M. Machine Learning and Prediction in Medicine—Beyond the Peak of Inflated Expectations. N. Engl. J. Med. 2017, 376, 2507–2509. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.; Faiz, O.; Davis, R.; Almoudaris, A.; Vincent, C. Surgical complications and their impact on patients’ psychosocial well-being: A systematic review and meta-analysis. BMJ Open 2016, 6, e007224. [Google Scholar] [CrossRef]
- Hamadi, H.Y.; Martinez, D.; Palenzuela, J.; Spaulding, A.C. Magnet Hospitals and 30-Day Readmission and Mortality Rates for Medicare Beneficiaries. Med. Care 2021, 59, 6–12. [Google Scholar] [CrossRef]
- Agency for Healthcare Research and Quality. Preventing Avoidable Readmissions. Available online: https://www.ahrq.gov/patient-safety/resources/improve-discharge/index.html (accessed on 25 September 2020).
- Biron, D.R.; Sinha, I.; Kleiner, J.E.; Aluthge, D.P.; Goodman, A.D.; Sarkar, I.N.; Cohen, E.; Daniels, A.H. A Novel Machine Learning Model Developed to Assist in Patient Selection for Outpatient Total Shoulder Arthroplasty. J. Am. Acad. Orthop. Surg. 2020, 28, e580–e585. [Google Scholar] [CrossRef]
- Karhade, A.V.; Thio, Q.C.; Ogink, P.T.; Shah, A.A.; Bono, C.M.; Oh, K.S.; Saylor, P.J.; Schoenfeld, A.J.; Shin, J.H.; Harris, M.B.; et al. Development of Machine Learning Algorithms for Prediction of 30-Day Mortality After Surgery for Spinal Metastasis. Neurosurgery 2019, 85, E83–E91. [Google Scholar] [CrossRef]
- Sheth, V.; Tripathi, U.; Sharma, A. A Comparative Analysis of Machine Learning Algorithms for Classification Purpose. Procedia Comput. Sci. 2022, 215, 422–431. [Google Scholar] [CrossRef]
- Hassanipour, S.; Ghaem, H.; Arab-Zozani, M.; Seif, M.; Fararouei, M.; Abdzadeh, E.; Sabetian, G.; Paydar, S. Comparison of artificial neural network and logistic regression models for prediction of outcomes in trauma patients: A systematic review and meta-analysis. Injury 2019, 50, 244–250. [Google Scholar] [CrossRef]
- Zhang, Z.; Beck, M.W.; Winkler, D.A.; Huang, B.; Sibanda, W.; Goyal, H. Opening the black box of neural networks: Methods for interpreting neural network models in clinical applications. Ann. Transl. Med. 2018, 6, 216. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Meza, G.; McKee, S.; Carlton, D.; Yang, A.; Govindaraj, S.; Iloreta, A. Association of Surgical and Hospital Volume and Patient Characteristics with 30-Day Readmission Rates. JAMA Otolaryngol. Head Neck Surg. 2019, 145, 328–337. [Google Scholar] [CrossRef]
- Graboyes, E.M.; Yang, Z.; Kallogjeri, D.; Diaz, J.A.; Nussenbaum, B. Patients undergoing total laryngectomy: An at-risk population for 30-day unplanned readmission. JAMA Otolaryngol. Head Neck Surg. 2014, 140, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Ferrandino, R.; Garneau, J.; Roof, S.; Pacheco, C.; Poojary, P.; Saha, A.; Chauhan, K.; Miles, B. The national landscape of unplanned 30-day readmissions after total laryngectomy. Laryngoscope 2018, 128, 1842–1850. [Google Scholar] [CrossRef] [PubMed]
- Dziegielewski, P.T.; Boyce, B.; Manning, A.; Agrawal, A.; Old, M.; Ozer, E.; Teknos, T.N. Predictors and costs of readmissions at an academic head and neck surgery service. Head Neck 2016, 38 (Suppl. S1), E502–E510. [Google Scholar] [CrossRef]
- Bur, A.M.; Brant, J.A.; Mulvey, C.L.; Nicolli, E.A.; Brody, R.M.; Fischer, J.P.; Cannady, S.B.; Newman, J.G. Association of Clinical Risk Factors and Postoperative Complications With Unplanned Hospital Readmission After Head and Neck Cancer Surgery. JAMA Otolaryngol. Head Neck Surg. 2016, 142, 1184–1190. [Google Scholar] [CrossRef] [PubMed]
- Goel, A.N.; Raghavan, G.; St John, M.A.; Long, J.L. Risk Factors, Causes, and Costs of Hospital Readmission After Head and Neck Cancer Surgery Reconstruction. JAMA Facial Plast. Surg. 2019, 21, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Rajaguru, V.; Han, W.; Kim, T.H.; Shin, J.; Lee, S.G. LACE Index to Predict the High Risk of 30-Day Readmission: A Systematic Review and Meta-Analysis. J. Pers. Med. 2022, 12, 545. [Google Scholar] [CrossRef] [PubMed]
- Cryts, A. How Two Health Systems Use Predictive Analytics to Reduce Readmissions. Managed Healthcare Executive Website. 2018. Available online: https://www.managedhealthcareexecutive.com/view/how-two-health-systems-use-predictive-analytics-reduce-readmissions (accessed on 6 September 2020).
- Rolston, J.D.; Han, S.J.; Chang, E.F. Systemic inaccuracies in the National Surgical Quality Improvement Program database: Implications for accuracy and validity for neurosurgery outcomes research. J. Clin. Neurosci. 2017, 37, 44–47. [Google Scholar] [CrossRef]
- American College of Surgeons. ACS NSQIP Participant Use Data File. American College of Surgeons Website. 2017. Available online: https://www.facs.org/quality-programs/acs-nsqip/participant-use (accessed on 7 September 2020).
- Patel, V.A.; Dunklebarger, M.; Banerjee, K.; Shokri, T.; Zhan, X.; Isildak, H. Surgical Management of Vestibular Schwannoma: Practice Pattern Analysis via NSQIP. Ann. Otol. Rhinol. Laryngol. 2020, 129, 230–237. [Google Scholar] [CrossRef]
- Mahboubi, H.; Maducdoc, M.M.; Yau, A.Y.; Ziai, K.; Ghavami, Y.; Badran, K.W.; Al-Thobaiti, M.; Brandon, B.; Djalilian, H.R. Vestibular Schwannoma Excision in Sporadic versus Neurofibromatosis Type 2 Populations. Otolaryngol. Head Neck Surg. 2015, 153, 822–831. [Google Scholar] [CrossRef] [PubMed]
Procedure | CPT Code |
---|---|
Supratentorial Craniectomy or Craniotomy Exploratory | 61304 |
Craniectomy or Craniotomy, Exploratory, Infratentorial | 61305 |
Suboccipital Craniectomy with Cervical Laminectomy | 61343 |
Posterior Fossa Cranial Decompression | 61345 |
Suboccipital Craniectomy | 61458 |
Suboccipital Craniectomy—Section of Cranial Nerves | 61460 |
Craniectomy with Tumor or Bone Lesion Excision | 61500 |
CTBC for Supratentorial Tumor | 61510 |
CTBC for Supratentorial Meningioma | 61512 |
CTBC for Supratentorial Cyst | 61516 |
Craniectomy for IPF Brain Tumor | 61518 |
Craniectomy for IPF Meningioma Brain Tumor | 61519 |
IPF Brain Tumor Excision or Cerebellopontine Angle Tumor Excision | 61520 |
Excision of Midline Tumor at IPF Skull Base | 61521 |
Brain Abscess Excision via IPF Craniectomy | 61522 |
IPF Cyst Excision | 61524 |
CBTC of Cerebellopontine Angle Tumor | 61526 |
CBTC of Cerebellopontine Angle Tumor with Posterior Fossa Craniotomy | 61530 |
Craniotomy with Partial or Subtotal Hemispherectomy | 61543 |
Craniotomy for Pituitary Tumor Removal with Intracranial Approach | 61546 |
Pituitary Tumor Excision via Transnasal or Transseptal Approach | 61548 |
Craniectomy/Craniotomy with Foreign Body Removal | 61570 |
Craniofacial Approach to Anterior Cranial Fossa | 61581 |
Infratemporal Pre-Auricular Approach to Middle Cranial Fossa | 61590 |
Infratemporal Post-Auricular Approach to Middle Cranial fossa | 61591 |
Orbitocranial Zygomatic Approach to Middle Cranial Fossa | 61592 |
Transtemporal Approach to PJM | 61595 |
Transcochlear Approach to PJM | 61596 |
Transcondylar Approach to PJM | 61597 |
Transpetrosal Approach to PCF | 61598 |
Lesion Reduction in IPP, specifically Extradural Area | 61605 |
Resection of Lesions in IPP | 61606 |
Resection of Lesions in Parasellar Area, Cavernous Sinus, Clivus, or Midline Skull Base | 61608 |
Resection of Lesions at PCF | 61615 and 61616 |
Secondary Repair of Dura Post-Skull Base Surgery | 61618 |
Craniectomy or Craniotomy for Neurostimulator Electrode Implantation on Cerebral Cortex | 61860 |
Dural or CSF Leak Repair | 62100 |
Lumbar Intraspinal Lesion Removal via Laminectomy | 63267 |
Extradural Growth of Spinal Cord via Laminectomy | 63277 |
Laminectomy with Tethered Spinal Cord Release in Lumbar Region | 63200 |
Intradural, Extramedullary Growth of Spinal Cord via Laminectomy | 63281 |
Excision of Intradural, Extramedullary Growth on Lumbar Spinal Cord | 63282 |
Intradural, Intramedullary Growth in Cervical Spine via Laminectomy | 63285 |
Excision of Intradural, Intramedullary Neoplasm via Laminectomy in Thoracolumbar Region | 63287 |
Metric | Reoperation | Medical Complications | Surgical Complications |
---|---|---|---|
Accuracy | 0.8206 | 0.8692 | 0.8729 |
Sensitivity | 0.3111 | 0.5152 | 0.3571 |
Specificity | 0.8673 | 0.8924 | 0.9014 |
Precision | 0.1772 | 0.2394 | 0.1667 |
F1 Score | 0.2258 | 0.3269 | 0.2273 |
ROC-AUC | 0.6315 | 0.7939 | 0.719 |
PR AUC | 0.1968 | 0.2208 | 0.1795 |
NPV | 0.932 | 0.9655 | 0.9621 |
PPV | 0.1772 | 0.2394 | 0.1667 |
Ranking | Reoperation | Medical Complication | Surgical Complication |
---|---|---|---|
1 | Days from Operation to Discharge | Hospital Discharge Destination Other than Home | Length of Stay Post-Operation until Discharge |
2 | Total Hospital Length of Stay | Total Hospital Length of Stay | Triage Operation Time |
3 | Time Duration from ALKPHOS Preoperative Labs to Operation | Days from Operation to Discharge | Days from Hospital Admission to Operation |
4 | Time Duration from WBC Preoperative Labs to Operation | Hypertension Requiring Medication | Total Hospital Length of Stay |
5 | Time Duration from INR Preoperative Labs to Operation | Time Duration from INR Preoperative Labs to Operation | Total Operation Time |
6 | Preoperative SGOT | Preoperative Serum Albumin | Preoperative Total Bilirubin |
7 | Total Operation Time | Total Operation Time | Days from Operation to Discharge |
8 | Time Duration from Bilirubin Preoperative Labs to Operation | Time Duration from Platelet Count Preoperative Labs to Operation | Preoperative SGOT |
9 | Age of Patient | ASA Classification | Time Duration from WBC Preoperative Labs to Operation |
10 | Triage Operation Time | Age of Patient | ASA Classification |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dichter, A.; Bhatt, K.; Liu, M.; Park, T.; Djalilian, H.R.; Abouzari, M. Post-Operative Outcome Predictions in Vestibular Schwannoma Using Machine Learning Algorithms. J. Pers. Med. 2024, 14, 1170. https://doi.org/10.3390/jpm14121170
Dichter A, Bhatt K, Liu M, Park T, Djalilian HR, Abouzari M. Post-Operative Outcome Predictions in Vestibular Schwannoma Using Machine Learning Algorithms. Journal of Personalized Medicine. 2024; 14(12):1170. https://doi.org/10.3390/jpm14121170
Chicago/Turabian StyleDichter, Abigail, Khushi Bhatt, Mohan Liu, Timothy Park, Hamid R. Djalilian, and Mehdi Abouzari. 2024. "Post-Operative Outcome Predictions in Vestibular Schwannoma Using Machine Learning Algorithms" Journal of Personalized Medicine 14, no. 12: 1170. https://doi.org/10.3390/jpm14121170
APA StyleDichter, A., Bhatt, K., Liu, M., Park, T., Djalilian, H. R., & Abouzari, M. (2024). Post-Operative Outcome Predictions in Vestibular Schwannoma Using Machine Learning Algorithms. Journal of Personalized Medicine, 14(12), 1170. https://doi.org/10.3390/jpm14121170