Interpretable Prediction of Myocardial Infarction Using Explainable Boosting Machines: A Biomarker-Based Machine Learning Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Explainable Boosting Machines (EBMs)
2.3. Modeling Section
2.3.1. Mathematical Framework and Modeling Approach
Dataset Characteristics and Preprocessing
EBM Architecture
Mathematical Model Formulation
- f(x) represents the final prediction score in log-odds scale for binary classification;
- β0 is the intercept term capturing baseline risk across the population;
- p denotes the total number of features (p = 8 clinical variables in this study);
- fi(xi) represents the additive component function for feature i, learned independently through gradient boosting;
- Each fi captures non-linear relationships while maintaining interpretability.
Model Configuration and Hyperparameters
Interpretability-Focused Training Strategy
Feature Importance Quantification
- Importance_i quantifies the average absolute contribution of feature i across all observations;
- n represents the total number of patients in the dataset (n = 1306);
- |fi(xj)| denotes the absolute magnitude of feature i’s contribution for patient j;
- This metric provides a direct measure of each biomarker’s diagnostic significance.
Partial Dependence Analysis
- PDj(xj) represents the partial dependence of feature j at specific value xj;
- x™j(i) denotes all other features (excluding j) for the i-th observation;
- f(xj, x−j(i)) is the model prediction when feature j is fixed at xj while other features vary across observations;
- This formulation isolates the effect of individual biomarkers by marginalizing out the influence of all other variables.
Performance Evaluation Framework
- AUC Calculation: AUC = ∫01 TPR(FPR) d(FPR);
- Accuracy: (TP + TN)/(TP + TN + FP + FN);
- Sensitivity/Recall: TP/(TP + FN);
- Specificity: TN/(TN + FP);
- Precision/PPV: TP/(TP + FP);
- F1 score: 2 × (Precision × Recall)/(Precision + Recall).
Clinical Interpretability Integration
- Global Interpretability: Feature importance ranking based on average absolute contributions across all patients;
- Feature-level Interpretability: Partial dependence plots revealing non-linear relationships between biomarkers and MI risk;
- Local Interpretability: Individual prediction explanations decomposing patient-specific biomarker contributions.
Mathematical Validation and Quality Assurance
- Bootstrap confidence intervals for performance metrics;
- Cross-validation assessment for generalization capability.
Computational Environment and Software Tools
2.4. Ethical Considerations
3. Results
3.1. Overall Model Performance for EBM (Without Interaction Terms)
3.1.1. Detailed Performance Analysis
3.1.2. Feature Importance Analysis
3.1.3. Partial Dependence Analyses
3.1.4. Local Explainability Analyses
Negative Case Analysis (Patient 1)
Positive Case Analysis (Patient 4)
3.2. Overall Model Performance for EBM (With Interaction Terms)
3.3. Comparative Analysis Against Existing Machine Learning Approaches
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zaheen, M.; Pender, P.; Dang, Q.M.; Sinha, E.; Chong, J.J.H.; Chow, C.K.; Zaman, S. Myocardial Infarction in the Young: Aetiology, Emerging Risk Factors, and the Role of Novel Biomarkers. J. Cardiovasc. Dev. Dis. 2025, 12, 148. [Google Scholar] [CrossRef]
- Radisauskas, R.; Sileikiene, L.; Kranciukaite-Butylkiniene, D.; Augustis, S.; Jasukaitiene, E.; Luksiene, D.; Tamosiunas, A.; Marcinkeviciene, K.; Virviciute, D.; Zaliaduonyte, D.; et al. Trends in Myocardial Infarction Morbidity and Mortality from Ischemic Heart Disease in Middle-Aged Lithuanian Population from 2000 to 2023: Data from Population-Based Kaunas Ischemic Heart Disease Register. Medicina 2025, 61, 910. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Liu, J.; Zeng, J.; Pan, H. Global burden of cardiovascular diseases attributed to low physical activity: An analysis of 204 countries and territories between 1990 and 2019. Am. J. Prev. Cardiol. 2024, 17, 100633. [Google Scholar] [CrossRef] [PubMed]
- Lewis, E.F.; Moye, L.A.; Rouleau, J.L.; Sacks, F.M.; Arnold, J.M.; Warnica, J.W.; Flaker, G.C.; Braunwald, E.; Pfeffer, M.A. Predictors of late development of heart failure in stable survivors of myocardial infarction: The CARE study. J. Am. Coll. Cardiol. 2003, 42, 1446–1453. [Google Scholar] [CrossRef]
- Gouda, P.; Savu, A.; Bainey, K.R.; Kaul, P.; Welsh, R.C. Long-term risk of death and recurrent cardiovascular events following acute coronary syndromes. PLoS ONE 2021, 16, e0254008. [Google Scholar] [CrossRef]
- Butler, J.; Hammonds, K.; Talha, K.M.; Alhamdow, A.; Bennett, M.M.; Bomar, J.V.A.; Ettlinger, J.A.; Traba, M.M.; Priest, E.L.; Schmedt, N.; et al. Incident heart failure and recurrent coronary events following acute myocardial infarction. Eur. Heart J. 2025, 46, 1540–1550. [Google Scholar] [CrossRef]
- Timmis, A.; Townsend, N.; Gale, C.P.; Torbica, A.; Lettino, M.; Petersen, S.E.; Mossialos, E.A.; Maggioni, A.P.; Kazakiewicz, D.; May, H.T.; et al. European Society of Cardiology: Cardiovascular Disease Statistics 2019. Eur. Heart J. 2020, 41, 12–85. [Google Scholar] [CrossRef]
- Nichols, M.; Townsend, N.; Scarborough, P.; Rayner, M. Cardiovascular disease in Europe: Epidemiological update. Eur. Heart J. 2013, 34, 3028–3034. [Google Scholar] [CrossRef] [PubMed]
- Kivimäki, M.; Batty, G.D.; Pentti, J.; Shipley, M.J.; Sipilä, P.N.; Nyberg, S.T.; Suominen, S.B.; Oksanen, T.; Stenholm, S.; Virtanen, M.; et al. Association between socioeconomic status and the development of mental and physical health conditions in adulthood: A multi-cohort study. Lancet. Public Health 2020, 5, e140–e149. [Google Scholar] [CrossRef]
- Kristono, G.A. The Effects of Health Determinants and Inequities on Acute Myocardial Infarction in New Zealand: An Epidemiological Essay. N. Z. Med. Stud. J. 2021, 0, 35–38. [Google Scholar] [CrossRef]
- Johansson, S.; Rosengren, A.; Young, K.; Jennings, E. Mortality and morbidity trends after the first year in survivors of acute myocardial infarction: A systematic review. BMC Cardiovasc. Disord. 2017, 17, 53. [Google Scholar] [CrossRef] [PubMed]
- De Luca, G.; Suryapranata, H.; Ottervanger, J.P.; Antman, E.M. Time delay to treatment and mortality in primary angioplasty for acute myocardial infarction: Every minute of delay counts. Circulation 2004, 109, 1223–1225. [Google Scholar] [CrossRef] [PubMed]
- Birnbach, B.; Höpner, J.; Mikolajczyk, R. Cardiac symptom attribution and knowledge of the symptoms of acute myocardial infarction: A systematic review. BMC Cardiovasc. Disord. 2020, 20, 445. [Google Scholar] [CrossRef]
- Conrad, N.; Judge, A.; Tran, J.; Mohseni, H.; Hedgecott, D.; Crespillo, A.P.; Allison, M.; Hemingway, H.; Cleland, J.G.; McMurray, J.J.V.; et al. Temporal trends and patterns in heart failure incidence: A population-based study of 4 million individuals. Lancet 2018, 391, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Gerber, Y.; Weston, S.A.; Enriquez-Sarano, M.; Berardi, C.; Chamberlain, A.M.; Manemann, S.M.; Jiang, R.; Dunlay, S.M.; Roger, V.L. Mortality Associated with Heart Failure After Myocardial Infarction: A Contemporary Community Perspective. Circ. Heart Fail. 2016, 9, e002460. [Google Scholar] [CrossRef]
- Kim, S.Y.; Lee, J.P.; Shin, W.R.; Oh, I.H.; Ahn, J.Y.; Kim, Y.H. Cardiac biomarkers and detection methods for myocardial infarction. Mol. Cell Toxicol. 2022, 18, 443–455. [Google Scholar] [CrossRef]
- Katsioupa, M.; Kourampi, I.; Oikonomou, E.; Tsigkou, V.; Theofilis, P.; Charalambous, G.; Marinos, G.; Gialamas, I.; Zisimos, K.; Anastasiou, A.; et al. Novel Biomarkers and Their Role in the Diagnosis and Prognosis of Acute Coronary Syndrome. Life 2023, 13, 1992. [Google Scholar] [CrossRef]
- Fan, J.; Ma, J.; Xia, N.; Sun, L.; Li, B.; Liu, H. Clinical Value of Combined Detection of CK-MB, MYO, cTnI and Plasma NT-proBNP in Diagnosis of Acute Myocardial Infarction. Clin. Lab. 2017, 63, 427–433. [Google Scholar] [CrossRef]
- Taylor, C.; Hobbs, R. Diagnosing Heart Failure—Experience and ‘Best Pathways’. Eur. Cardiol. Rev. 2010, 6, 10–12. [Google Scholar] [CrossRef]
- Perrichot, A.; Vaittinada Ayar, P.; Taboulet, P.; Choquet, C.; Gay, M.; Casalino, E.; Steg, P.G.; Curac, S.; Vaittinada Ayar, P. Assessment of real-time electrocardiogram effects on interpretation quality by emergency physicians. BMC Med. Educ. 2023, 23, 677. [Google Scholar] [CrossRef]
- Wang, S.; Hu, P. Deep Learning for Automated Echocardiogram Analysis. J. Stud. Res. 2022, 11, 1–13. [Google Scholar] [CrossRef]
- Aydın, S.; Uğur, K.; Aydın, S.; Şahin, İ.; Yardım, M. Biomarkers in acute myocardial infarction: Current perspectives. Vasc. Health Risk Manag. 2019, 15, 1–10. [Google Scholar] [CrossRef]
- Troughton, R.W.; Felker, G.M.; Januzzi, J.L. Natriuretic Peptide-Guided Heart Failure Management. Eur. Heart J. 2013, 35, 16–24. [Google Scholar] [CrossRef]
- Maries, L.; Maniţiu, I. Diagnostic and Prognostic Values of B-Type Natriuretic Peptides (BNP) and N-Terminal Fragment Brain Natriuretic Peptides (NT-pro-BNP): Review Article. Cardiovasc. J. Afr. 2013, 24, 286–289. [Google Scholar] [CrossRef]
- Liu, Q.; Aroonyadet, N.; Song, Y.; Wang, X.; Cao, X.; Liu, Y.; Cong, S.; Wu, F.; Thompson, M.E.; Zhou, C. Highly Sensitive and Quick Detection of Acute Myocardial Infarction Biomarkers Using In2O3 Nanoribbon Biosensors Fabricated Using Shadow Masks. ACS Nano 2016, 10, 10117–10125. [Google Scholar] [CrossRef]
- Sun, X.; Yin, Y.; Yang, Q.; Huo, T. Artificial intelligence in cardiovascular diseases: Diagnostic and therapeutic perspectives. Eur. J. Med. Res. 2023, 28, 242. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.J.; Yousuf, S.; Padala, J.V.; Reddy, S.; Saraf, P.; Nooh, A.; Fernandez Gutierrez, L.M.A.; Abdirahman, A.H.; Tanveer, R.; Rai, M. Advancements in Artificial Intelligence for Precision Diagnosis and Treatment of Myocardial Infarction: A Comprehensive Review of Clinical Trials and Randomized Controlled Trials. Cureus 2024, 16, e60119. [Google Scholar] [CrossRef] [PubMed]
- Szymańska, C.; Baszko, A. Artificial Intelligence Tools in Myocardial Infarction Prognosis: Evaluating the Performance of Machine Learning and Deep Learning Models. Curr. Cardiol. Rev. 2025, in press. [Google Scholar] [CrossRef] [PubMed]
- Band, S.; Yarahmadi, A.; Hsu, C.; Biyari, M.; Sookhak, M.; Ameri, R.; Dehzangi, I.; Chronopoulos, A.; Liang, H. Application of explainable artificial intelligence in medical health: A systematic review of interpretability methods. Inf. Med. Unlocked 2023, 40, 101286. [Google Scholar] [CrossRef]
- Hassija, V.; Chamola, V.; Mahapatra, A.; Singal, A.; Goel, D.; Huang, K.; Scardapane, S.; Spinelli, I.; Mahmud, M.; Hussain, A. Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence. Cogn. Comput. 2024, 16, 45–74. [Google Scholar] [CrossRef]
- Hermosilla, P.; Berríos, S.; Allende-Cid, H. Explainable AI for Forensic Analysis: A Comparative Study of SHAP and LIME in Intrusion Detection Models. Appl. Sci. 2025, 15, 7329. [Google Scholar] [CrossRef]
- Velmurugan, M.; Ouyang, C.; Sindhgatta, R.; Moreira, C. Through the looking glass: Evaluating post hoc explanations using transparent models. Int. J. Data Sci. Anal. 2025, 20, 615–635. [Google Scholar] [CrossRef]
- Lolak, S.; Attia, J.; McKay, G.J.; Thakkinstian, A. Comparing Explainable Machine Learning Approaches with Traditional Statistical Methods for Evaluating Stroke Risk Models: Retrospective Cohort Study. JMIR Cardio 2023, 7, e47736. [Google Scholar] [CrossRef]
- Sharma, N.A.; Chand, R.R.; Buksh, Z.; Ali, A.B.M.S.; Hanif, A.; Beheshti, A. Explainable AI Frameworks: Navigating the Present Challenges and Unveiling Innovative Applications. Algorithms 2024, 17, 227. [Google Scholar] [CrossRef]
- Khattak, A.; Zhang, J.; Chan, P.-W.; Chen, F.; Almujibah, H. Explainable Boosting Machine: A Contemporary Glass-Box Strategy for the Assessment of Wind Shear Severity in the Runway Vicinity Based on the Doppler Light Detection and Ranging Data. Atmosphere 2024, 15, 20. [Google Scholar] [CrossRef]
- Chen, Z.; Tan, S.; Nori, H.; Inkpen, K.; Lou, Y.; Caruana, R. Using Explainable Boosting Machines (EBMs) to Detect Common Flaws in Data. In Proceedings of the Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Virtual Event, 13–17 September 2021; pp. 534–551. [Google Scholar]
- Mahamadou, A.J.D.; Rodrigues, E.A.; Vakorin, V.; Antoine, V.; Moreno, S. Interpretable machine learning for precision cognitive aging. Front. Comput. Neurosci. 2025, 19, 1560064. [Google Scholar] [CrossRef]
- Arslan, A.K.; Yagin, F.H.; Algarni, A.; Al-Hashem, F.; Ardigò, L.P. Combining the Strengths of the Explainable Boosting Machine and Metabolomics Approaches for Biomarker Discovery in Acute Myocardial Infarction. Diagnostics 2024, 14, 1353. [Google Scholar] [CrossRef]
- Maghdid, S.; Rashid, T. An Extensive Dataset for the Heart Disease Classification System. 2022. Available online: https://data.mendeley.com/datasets/65gxgy2nmg/2 (accessed on 20 June 2025).
- Janosi, A.; Steinbrunn, W.; Pfisterer, M.; Detrano, R. Available online: https://www.kaggle.com/datasets/ritwikb3/heart-disease-cleveland (accessed on 27 August 2025).
- Bhardwaj, A. Available online: https://www.kaggle.com/datasets/aasheesh200/framingham-heart-study-dataset (accessed on 27 August 2025).
- Johnson, A.; Pollard, T.; Mark, R. Available online: https://physionet.org/content/mimiciii/1.4/ (accessed on 27 August 2025).
- Maillart, A.; Robert, C.Y. Distill Knowledge of Additive Tree Models into Generalized Linear Models: A New Learning Approach for Non-Smooth Generalized Additive Models. Ann. Actuar. Sci. 2024, 18, 692–711. [Google Scholar] [CrossRef]
- Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable AI: A Review of Machine Learning Interpretability Methods. Entropy 2020, 23, 18. [Google Scholar] [CrossRef]
- Burkart, N.; Huber, M.F. A Survey on the Explainability of Supervised Machine Learning. J. Artif. Intell. Res. 2021, 70, 245–317. [Google Scholar] [CrossRef]
- Arrieta, A.B.; Díaz-Rodríguez, N.; Ser, J.D.; Bennetot, A.; Tabik, S.; Barbado, A.; García, S.; Gil-López, S.; Molina, D.; Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges Toward Responsible AI. Inf. Fusion 2020, 58, 82–115. [Google Scholar] [CrossRef]
- Allen, B. An Interpretable Machine Learning Model of Cross-Sectional U.S. County-Level Obesity Prevalence Using Explainable Artificial Intelligence. PLoS ONE 2023, 18, e0292341. [Google Scholar] [CrossRef]
- Allen, B.; Lane, M.; Steeves, E.A.; Raynor, H.A. Using Explainable Artificial Intelligence to Discover Interactions in an Ecological Model for Obesity. Int. J. Environ. Res. Public Health 2022, 19, 9447. [Google Scholar] [CrossRef]
- Hernández, M.; Ramon-Julvez, U.; Viladés, E.; Ciordía, B.C.; Mayordomo, E.; García-Martín, E. Explainable Artificial Intelligence Toward Usable and Trustworthy Computer-Aided Diagnosis of Multiple Sclerosis from Optical Coherence Tomography. PLoS ONE 2023, 18, e0289495. [Google Scholar] [CrossRef]
- Marcinkevičs, R.; Vogt, J.E. Interpretability and Explainability: A Machine Learning Zoo Mini-Tour. arXiv 2020, arXiv:2012.01805. [Google Scholar] [CrossRef]
- Murdoch, W.J.; Singh, C.; Kumbier, K.; Abbasi-Asl, R.; Yu, B. Definitions, Methods, and Applications in Interpretable Machine Learning. Proc. Natl. Acad. Sci. USA 2019, 116, 22071–22080. [Google Scholar] [CrossRef]
- Scheinker, D.; Valencia, A.; Rodríguez, F. Identification of Factors Associated with Variation in US County-Level Obesity Prevalence Rates Using Epidemiologic vs Machine Learning Models. JAMA Netw. Open 2019, 2, e192884. [Google Scholar] [CrossRef] [PubMed]
- Chen, H. Sudden Cardiac Death in a Case of Non-Dominant Coronary Artery Obstruction Without Depressed Left Ventricular Function. Cardiol. Res. 2013, 4, 121–125. [Google Scholar] [CrossRef]
- Zipes, D.P.; Wellens, H.J. Sudden cardiac death. Circulation 1998, 98, 2334–2351. [Google Scholar] [CrossRef] [PubMed]
- Savard, P.; Rouleau, J.L.; Ferguson, J.; Poitras, N.; Morel, P.; Davies, R.F.; Stewart, D.J.; Talajic, M.; Gardner, M.; Dupuis, R.; et al. Risk stratification after myocardial infarction using signal-averaged electrocardiographic criteria adjusted for sex, age, and myocardial infarction location. Circulation 1997, 96, 202–213. [Google Scholar] [CrossRef] [PubMed]
- Neri, M.; Riezzo, I.; Pascale, N.; Pomara, C.; Turillazzi, E. Ischemia/Reperfusion Injury Following Acute Myocardial Infarction: A Critical Issue for Clinicians and Forensic Pathologists. Mediat. Inflamm. 2017, 2017, 7018393. [Google Scholar] [CrossRef] [PubMed]
- Kligfield, P.; Gettes, L.S.; Bailey, J.J.; Childers, R.; Deal, B.J.; Hancock, E.W.; van Herpen, G.; Kors, J.A.; Macfarlane, P.; Mirvis, D.M.; et al. Recommendations for the standardization and interpretation of the electrocardiogram: Part I: The electrocardiogram and its technology: A scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society: Endorsed by the International Society for Computerized Electrocardiology. Circulation 2007, 115, 1306–1324. [Google Scholar] [CrossRef] [PubMed]
- Khalil, H. Traditional and novel diagnostic biomarkers for acute myocardial infarction. Egypt. J. Intern. Med. 2022, 34, 87. [Google Scholar] [CrossRef]
- Apple, F.S.; Collinson, P.O. Analytical characteristics of high-sensitivity cardiac troponin assays. Clin. Chem. 2012, 58, 54–61. [Google Scholar] [CrossRef]
- Maisel, A.S.; Krishnaswamy, P.; Nowak, R.M.; McCord, J.; Hollander, J.E.; Duc, P.; Omland, T.; Storrow, A.B.; Abraham, W.T.; Wu, A.H.; et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N. Engl. J. Med. 2002, 347, 161–167. [Google Scholar] [CrossRef]
- Nori, H.; Caruana, R.; Bu, Z.; Shen, J.H.; Kulkarni, J. Accuracy, Interpretability, and Differential Privacy via Explainable Boosting. In Proceedings of the 38th International Conference on Machine Learning, Proceedings of Machine Learning Research, Virtual, 18–24 July 2021; pp. 8227–8237. [Google Scholar]
- Zhang, Y.; Cao, Y.; Xin, Y.; Liu, Y. Significance of detecting cardiac troponin I and creatine kinase MB in critically Ill children without primary cardiac illness. Front. Pediatr. 2024, 12, 1445651. [Google Scholar] [CrossRef]
- de Winter, R.J.; Koster, R.W.; Sturk, A.; Sanders, G.T. Value of myoglobin, troponin T, and CK-MBmass in ruling out an acute myocardial infarction in the emergency room. Circulation 1995, 92, 3401–3407. [Google Scholar] [CrossRef]
- Robinson, D.J.; Christenson, R.H. Creatine kinase and its CK-MB isoenzyme: The conventional marker for the diagnosis of acute myocardial infarction. J. Emerg. Med. 1999, 17, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Doudesis, D.; Lee, K.K.; Boeddinghaus, J.; Bularga, A.; Ferry, A.V.; Tuck, C.; Lowry, M.T.H.; Lopez-Ayala, P.; Nestelberger, T.; Koechlin, L.; et al. Machine learning for diagnosis of myocardial infarction using cardiac troponin concentrations. Nat. Med. 2023, 29, 1201–1210. [Google Scholar] [CrossRef]
- Dolci, A.; Panteghini, M. The exciting story of cardiac biomarkers: From retrospective detection to gold diagnostic standard for acute myocardial infarction and more. Clin. Chim. Acta 2006, 369, 179–187. [Google Scholar] [CrossRef]
Performance Metrics | Value | 95% CI |
---|---|---|
Accuracy | 0.966 | 0.944–0.988 |
Balanced Accuracy | 0.965 | 0.943–0.987 |
MCC | 0.928 | 0.897–0.960 |
PPV | 0.975 | 0.936–0.993 |
Sensitivity | 0.968 | 0.928–0.990 |
Specificity | 0.962 | 0.904–0.989 |
F1 Score | 0.971 | 0.951–0.992 |
NPV | 0.952 | 0.892–0.984 |
Metrics | Without Interaction (Baseline) | With Interaction |
---|---|---|
Accuracy | 96.6% | 96.6% |
Precision | 97.5% | 96.8% |
Recall/Sensitivity | 96.8% | 97.5% |
Specificity | 96.2% | 95.2% |
F1 Score | 0.971 | 0.971 |
NPV | 95.2% | 96.2% |
Models | Accuracy | Balanced Accuracy | MCC | PPV | Recall | Sensitivity | Specificity | NPV | AUC |
---|---|---|---|---|---|---|---|---|---|
EBM | 0.966 | 0.965 | 0.928 | 0.975 | 0.968 | 0.962 | 0.971 | 0.952 | 0.98 |
LR | 0.817 | 0.806 | 0.612 | 0.852 | 0.852 | 0.760 | 0.852 | 0.760 | 0.88 |
NN | 0.691 | 0.610 | 0.315 | 0.678 | 0.951 | 0.270 | 0.792 | 0.771 | 0.84 |
Naïve Bayes | 0.615 | 0.686 | 0.424 | 0.984 | 0.383 | 0.990 | 0.551 | 0.497 | 0.84 |
SVM | 0.622 | 0.505 | 0.079 | 0.621 | 1.000 | 0.010 | 0.766 | 1.000 | 0.71 |
k-NN | 0.634 | 0.595 | 0.198 | 0.683 | 0.759 | 0.430 | 0.719 | 0.524 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kucukakcali, Z.; Cicek, I.B.; Akbulut, S. Interpretable Prediction of Myocardial Infarction Using Explainable Boosting Machines: A Biomarker-Based Machine Learning Approach. Diagnostics 2025, 15, 2219. https://doi.org/10.3390/diagnostics15172219
Kucukakcali Z, Cicek IB, Akbulut S. Interpretable Prediction of Myocardial Infarction Using Explainable Boosting Machines: A Biomarker-Based Machine Learning Approach. Diagnostics. 2025; 15(17):2219. https://doi.org/10.3390/diagnostics15172219
Chicago/Turabian StyleKucukakcali, Zeynep, Ipek Balikci Cicek, and Sami Akbulut. 2025. "Interpretable Prediction of Myocardial Infarction Using Explainable Boosting Machines: A Biomarker-Based Machine Learning Approach" Diagnostics 15, no. 17: 2219. https://doi.org/10.3390/diagnostics15172219
APA StyleKucukakcali, Z., Cicek, I. B., & Akbulut, S. (2025). Interpretable Prediction of Myocardial Infarction Using Explainable Boosting Machines: A Biomarker-Based Machine Learning Approach. Diagnostics, 15(17), 2219. https://doi.org/10.3390/diagnostics15172219