Life on Venus?
Abstract
:1. Introduction
The Phosphine Conundrum
2. Past Habitability of Venus
2.1. Unknowns About Early Venus
2.1.1. Presence of Liquid Water on Surface
2.1.2. Rotation Rate
3. Present Habitability of Venus Atmosphere
3.1. Chemical Dis-Equilibria
3.2. Environmental Challenges
4. Life Detection Strategies—Bio-Signatures?
4.1. Atmospheric Composition
4.1.1. Minor Constituents: Water Vapor, Sulfur Dioxide, Sulfuric Acid Vapor
4.1.2. Noble Gas Isotopic Ratios
4.2. Ultraviolet and Other Absorbers
4.3. Temporal Changes in Global Planetary Properties
4.4. Bio-Organic Molecular Structures
5. Remarks
Funding
Conflicts of Interest
References
- Arrhenius, S. The Destinies of Stars; G. P. Putnam and Sons, The Knickerbocker Press: New York, NY, USA; London, UK, 1918. [Google Scholar]
- Morowitz, H.; Sagan, C. Life on the Surface of Venus? Nature 1967, 216, 1198–1199. [Google Scholar] [CrossRef]
- Suomi, V. Cloud Motions on Venus. In NASA Special Publication; NASA: Washington, DC, USA, 1975; p. 42. [Google Scholar]
- Suomi, V.E.; Limaye, S.S. Venus: Further Evidence of Vortex Circulation. Science 1978, 201, 1009–1011. [Google Scholar] [CrossRef]
- Limaye, S.S.; Suomi, V.E. Cloud motions on Venus—Global structure and organization. J. Atmos. Sci. 1981, 38, 1220–1235. [Google Scholar] [CrossRef]
- Boyer, C.; Guérin, P. Étude de la Rotation Rétrograde, en 4 Jours, de la Couche Extérieure Nuageuse de Vénus. Icarus 1969, 11, 338. [Google Scholar] [CrossRef]
- Boyer, C. The 4-day rotation of the upper atmosphere of venus. Planet. Space Sci. 1973, 21, 1559. [Google Scholar] [CrossRef]
- Boyer, C. La haute atmosphère de Vénus: Tentative d’explication de sa rotation. Astronomie 1986, 100, 77. [Google Scholar]
- Surkov, Y.A.; Andrejchikov, B.M.; Kalinkina, O.M. On the content of ammonia in the Venus atmosphere based on data obtained from Venera 8 automatic station. Akad. Nauk SSSR Dokl. 1973, 213, 296–299. [Google Scholar]
- von Zahn, U.; Moroz, V.I. Composition of the Venus atmosphere below 100 km altitude. Adv. Space Res. 1985, 5, 173. [Google Scholar] [CrossRef]
- Oyama, V.I.; Carle, G.C.; Woeller, F.; Pollack, J.B.; Reynolds, R.T.; Craig, R.A. Pioneer Venus gas chromatography of the lower atmosphere of Venus. J. Geophys. Res. 1980, 85, 7891. [Google Scholar] [CrossRef]
- Kuiper, G.P. Identification of the Venus cloud layers. Commun. Lunar Planet. Lab. 1969, 6, 229. [Google Scholar]
- Travis, L.D. On the origin of ultraviolet contrasts on Venus. J. Atmos. Sci. 1975, 32, 1190. [Google Scholar] [CrossRef]
- Donahue, T.M.; Hoffman, J.H.; Hodges, R.R.; Watson, A.J. Venus was wet—A measurement of the ratio of deuterium to hydrogen. Science 1982, 216, 630–633. [Google Scholar] [CrossRef]
- Goettel, K.A.; Lewis, J.S. Ammonia in the Atmosphere of Venus. J. Atmos. Sci. 1974, 31, 828–830. [Google Scholar] [CrossRef]
- Shimizu, M. Ultraviolet absorbers in the Venus clouds. Astrophys. Space Sci. 1977, 51, 497. [Google Scholar] [CrossRef]
- Pollack, J.B.; Ragent, B.; Boese, R.W.; Tomasko, M.G.; Blamont, J.; Knollenberg, R.G.; Esposito, L.W.; Stewart, A.I.; Travis, L. Nature of the ultraviolet absorber in the Venus clouds—Inferences based on Pioneer Venus data. Science 1979, 205, 76–79. [Google Scholar] [CrossRef]
- Pollack, J.B.; Toon, O.B.; Whitten, R.C.; Boese, R.; Ragent, B.; Tomasko, M.; Esposito, L.; Travis, L.; Wiedman, D. Distribution and source of the UV absorption in Venus’ atmosphere. J. Geophys. Res. Space Phys. 1980, 85, 8141–8150. [Google Scholar] [CrossRef]
- Bertaux, J.-L.; Ehkonomov, A.P.; Mege, B.; Moroz, V.I.; Abergel, A.; Gnedykh, V.I.; Grigor’ev, A.V.; Moshkin, B.E.; Hauchecorne, A.; Pommereau, J.-P.; et al. Investigation of UV absorption in the Venus atmosphere with the Vega 1 and Vega 2 reentry vehicles. Kosm. Issled. 1987, 25, 691. [Google Scholar]
- Markiewicz, W.J.; Petrova, E.; Shalygina, O.; Almeida, M.; Titov, D.V.; Limaye, S.S.; Ignatiev, N.; Roatsch, T.; Matz, K.D. Glory on Venus cloud tops and the unknown UV absorber. Icarus 2014, 234, 200–203. [Google Scholar] [CrossRef]
- Titov, D.V.; Ignatiev, N.I.; McGouldrick, K.; Wilquet, V.; Wilson, C.F. Clouds and Hazes of Venus. Space Sci. Rev. 2018, 214, 126. [Google Scholar] [CrossRef]
- Grinspoon, D.H. Venus Revealed: A New Look Below the Clouds of Our Mysterious Twin Planet; Perseus Books Group: New York, NY, USA, 1997. [Google Scholar]
- Schulze-Makuch, D.; Grinspoon, D.H.; Abbas, O.; Irwin, L.N.; Bullock, M.A. A Sulfur-Based Survival Strategy for Putative Phototrophic Life in the Venusian Atmosphere. Astrobiology 2004, 4, 11–18. [Google Scholar] [CrossRef]
- Grinspoon, D.; Bullock, M. Astrobiology and Venus Exploration. In Exploring Venus as a Terrestrial Planet; John Wiley & Sons: Hoboken, NJ, USA, 2007; pp. 191–206. [Google Scholar]
- Limaye, S.S.; Mogul, R.; Smith, D.J.; Ansari, A.H.; Słowik, G.; Vaishampayan, P. Venus’ Spectral Signatures and the Potential for Life in the Clouds. Astrobiology 2018, 18, 1181–1198. [Google Scholar] [CrossRef] [PubMed]
- Seager, S.; Petkowski, J.J.; Gao, P.; Bains, W.; Bryan, N.C.; Ranjan, S.; Greaves, J. The Venusian Lower Atmosphere Haze as a Depot for Desiccated Microbial Life: A Proposed Life Cycle for Persistence of the Venusian Aerial Biosphere. Astrobiology 2020. [Google Scholar] [CrossRef] [PubMed]
- Greaves, J.S.; Richards, A.M.S.; Bains, W.; Rimmer, P.B.; Sagawa, H.; Clements, D.L.; Seager, S.; Petkowski, J.J.; Sousa-Silva, C.; Ranjan, S.; et al. Phosphine gas in the cloud decks of Venus. Nat. Astron. 2020, 5, 655–664. [Google Scholar] [CrossRef]
- Sousa-Silva, C.; Seager, S.; Ranjan, S.; Petkowski, J.J.; Zhan, Z.; Hu, R.; Bains, W. Phosphine as a Biosignature Gas in Exoplanet Atmospheres. Astrobiology 2020, 20, 235–268. [Google Scholar] [CrossRef]
- Schulze-Makuch, D. The Case (or Not) for Life in the Venusian Clouds. Life 2021, 11, 255. [Google Scholar] [CrossRef] [PubMed]
- Westall, F.; de Vries, S.T.; Nijman, W.; Rouchon, V.; Orberger, B.; Pearson, V.; Watson, J.; Verchovsky, A.; Wright, I.; Rouzaud, J.-N.l.; et al. The 3.466 Ga “Kitty’s Gap Chert,” an early Archean microbial ecosystem. In Processes on the Early Earth; Geological Society of America: Boulder, CO, USA, 2006; Volume 405. [Google Scholar]
- Westall, F.; Höning, D.; Avice, G.; Gentry, D.; Gerya, T.; Gillmann, C.; Izenberg, N.; Way, M.J.; Wilson, C. The Habitability of Venus. Space Sci. Rev. 2023, 219, 17. [Google Scholar] [CrossRef]
- Widemann, T.; Smrekar, S.E.; Garvin, J.B.; Straume-Lindner, A.G.; Ocampo, A.C.; Schulte, M.D.; Voirin, T.; Hensley, S.; Dyar, M.D.; Whitten, J.L.; et al. Venus Evolution Through Time: Key Science Questions, Selected Mission Concepts and Future Investigations. Space Sci. Rev. 2023, 219, 56. [Google Scholar] [CrossRef]
- Geng, J.; Zhang, R.; Wang, X. Chemical Origin of Phosphine in Nature. In Proceedings of the 2010 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 18–20 June 2010; pp. 1–12. [Google Scholar]
- Villanueva, G.; Cordiner, M.; Irwin, P.; de Pater, I.; Butler, B.; Gurwell, M.; Milam, S.; Nixon, C.; Luszcz-Cook, S.; Wilson, C.; et al. No phosphine in the atmosphere of Venus. arXiv 2020, arXiv:2010.14305. [Google Scholar]
- Snellen, I.A.G.; Guzman-Ramirez, L.; Hogerheijde, M.R.; Hygate, A.P.S.; van der Tak, F.F.S. Re-analysis of the 267 GHz ALMA observations of Venus. No statistically significant detection of phosphine. Astron. Astrophys. 2020, 644, L2. [Google Scholar] [CrossRef]
- Akins, A.B.; Lincowski, A.P.; Meadows, V.S.; Steffes, P.G. Complications in the ALMA Detection of Phosphine at Venus. Astrophys. J. 2021, 907, L27. [Google Scholar] [CrossRef]
- Villanueva, G.L.; Cordiner, M.; Irwin, P.G.J.; de Pater, I.; Butler, B.; Gurwell, M.; Milam, S.N.; Nixon, C.A.; Luszcz-Cook, S.H.; Wilson, C.F.; et al. No evidence of phosphine in the atmosphere of Venus from independent analyses. Nat. Astron. 2021, 5, 631–635. [Google Scholar] [CrossRef]
- Truong, N.; Lunine, J.I. Volcanically extruded phosphides as an abiotic source of Venusian phosphine. Proc. Natl. Acad. Sci. USA 2021, 118, e2021689118. [Google Scholar] [CrossRef]
- Mráziková, K.; Knížek, A.; Saeidfirozeh, H.; Petera, L.; Civiš, S.; Saija, F.; Cassone, G.; Rimmer, P.B.; Ferus, M. A Novel Abiotic Pathway for Phosphine Synthesis over Acidic Dust in Venus’ Atmosphere. Astrobiology 2024, 24, 407–422. [Google Scholar] [CrossRef]
- Glindemann, D.; Edwards, M.; Morgenstern, P. Phosphine from Rocks: Mechanically Driven Phosphate Reduction? Environ. Sci. Technol. 2005, 39, 8295–8299. [Google Scholar] [CrossRef] [PubMed]
- Bains, W.; Petkowski, J.J.; Seager, S.; Ranjan, S.; Sousa-Silva, C.; Rimmer, P.B.; Zhan, Z.; Greaves, J.S.; Richards, A.M.S. Phosphine on Venus Cannot be Explained by Conventional Processes. arXiv 2020, arXiv:2009.06499v1. [Google Scholar] [CrossRef]
- Mogul, R.; Limaye, S.S.; Way, M.J.; Cordova, J.A. Venus’ Mass Spectra Show Signs of Disequilibria in the Middle Clouds. Geophys. Res. Lett. 2021, 48, e2020GL091327. [Google Scholar] [CrossRef] [PubMed]
- Limaye, S.S.; Mogul, R.; Baines, K.H.; Bullock, M.A.; Cockell, C.; Cutts, J.A.; Gentry, D.M.; Grinspoon, D.H.; Head, J.W.; Jessup, K.-L.; et al. Venus, an astrobiology target. Astrobiology 2021, 21, 23. [Google Scholar] [CrossRef]
- Cockell, C.S. Life on Venus. Planet. Space Sci. 1999, 47, 1487–1501. [Google Scholar] [CrossRef]
- Bains, W.; Petkowski, J.J.; Zhan, Z.; Seager, S. Evaluating Alternatives to Water as Solvents for Life: The Example of Sulfuric Acid. Life 2021, 11, 400. [Google Scholar] [CrossRef]
- Jiang, L.-Q.; Carter, B.R.; Feely, R.A.; Lauvset, S.K.; Olsen, A. Surface ocean pH and buffer capacity: Past, present and future. Sci. Rep. 2019, 9, 18624. [Google Scholar] [CrossRef]
- Grinspoon, D.H. Was Venus wet? Deuterium reconsidered. Science 1987, 238, 1702–1704. [Google Scholar] [CrossRef]
- Way, M.J.; Del Genio, A.; Amundsen, D.S. Modeling Venus-Like Worlds Through Time. arXiv 2018, arXiv:1802.05434. [Google Scholar]
- Way, M.J.; Del Genio, A.D.; Kiang, N.Y.; Sohl, L.E.; Grinspoon, D.H.; Aleinov, I.; Kelley, M.; Clune, T. Was Venus the first habitable world of our solar system? Geophys. Res. Lett. 2016, 43, 8376–8383. [Google Scholar] [CrossRef] [PubMed]
- Mueller, N.; Helbert, J.; Hashimoto, G.L.; Tsang, C.C.C.; Erard, S.; Piccioni, G.; Drossart, P. Venus surface thermal emission at 1 μm in VIRTIS imaging observations: Evidence for variation of crust and mantle differentiation conditions. J. Geophys. Res. (Planets) 2008, 113, E00B17. [Google Scholar] [CrossRef]
- Kiefer, W.S.; Weller, M.B. From Mobile Lid to Stagnant Lid Mantle Convection: Variations in Solar Luminosity, Climate Evolution, and the Temporal Variability in Tectonic Style on Venus. In Proceedings of the Exoplanets in Our Backyard: Solar System and Exoplanet Synergies on Planetary Formation, Evolution, and Habitability Conference, Houston, TX, USA, 5–7 February 2020; p. 3020. [Google Scholar]
- Weller, M.B.; Kiefer, W.S. The Physics of Changing Tectonic Regimes: Implications for the Temporal Evolution of Mantle Convection and the Thermal History of Venus. J. Geophys. Res. (Planets) 2020, 125, e05960. [Google Scholar] [CrossRef]
- Krissansen-Totton, J.; Fortney, J.J.; Nimmo, F. Was Venus Ever Habitable? Constraints from a Coupled Interior–Atmosphere–Redox Evolution Model. Planet. Sci. J. 2021, 2, 216. [Google Scholar] [CrossRef]
- Way, M.J.; Del Genio, A.D. Venusian Habitable Climate Scenarios: Modeling Venus Through Time and Applications to Slowly Rotating Venus-Like Exoplanets. J. Geophys. Res. Planets 2020, 125, e2019JE006276. [Google Scholar] [CrossRef]
- Warren, A.O.; Kite, E.S. Narrow range of early habitable Venus scenarios permitted by modeling of oxygen loss and radiogenic argon degassing. Proc. Natl. Acad. Sci. USA 2023, 120, e2209751120. [Google Scholar] [CrossRef]
- Constantinou, T.; Shorttle, O.; Rimmer, P.B. A dry Venusian interior constrained by atmospheric chemistry. Nat. Astron. 2025, 9, 189–198. [Google Scholar] [CrossRef]
- Turbet, M.; Bolmont, E.; Chaverot, G.; Ehrenreich, D.; Leconte, J.; Marcq, E. Day–night cloud asymmetry prevents early oceans on Venus but not on Earth. Nature 2021, 598, 276–280. [Google Scholar] [CrossRef]
- Mahieux, A.; Viscardy, S.; Yelle, R.V.; Karyu, H.; Chamberlain, S.; Robert, S.; Piccialli, A.; Trompet, L.; Erwin, J.T.; Ubukata, S.; et al. Unexpected increase of the deuterium to hydrogen ratio in the Venus mesosphere. Proc. Natl. Acad. Sci. USA 2024, 121, e2401638121. [Google Scholar] [CrossRef] [PubMed]
- Garvin, J.B.; Getty, S.A.; Arney, G.N.; Johnson, N.M.; Kohler, E.; Schwer, K.O.; Sekerak, M.; Bartels, A.; Saylor, R.S.; Elliott, V.E.; et al. Revealing the Mysteries of Venus: The DAVINCI Mission. Planet. Sci. J. 2022, 3, 117. [Google Scholar] [CrossRef]
- Donahue, T.M.; Hodges, R.R., Jr. Past and present water budget of Venus. J. Geophys. Res. 1992, 97, 6083–6091. [Google Scholar] [CrossRef]
- Sulcanese, D.; Mitri, G.; Mastrogiuseppe, M. Evidence of ongoing volcanic activity on Venus revealed by Magellan radar. Nat. Astron. 2024, 8, 973–982. [Google Scholar] [CrossRef]
- Deamer, D.W.; Damer, B.F.; Van Kranendonk, M.J.; Djokic, T. An Origin of Life in Cycling Hot Spring Pools: Emerging Evidence from Chemistry, Geology and Computational Studies. In Proceedings of the XVIIIth International Conference on the Origin of Life, San Diego, CA, USA, 16–21 July 2017; p. 4130. [Google Scholar]
- Damer, B.; Deamer, D. The Hot Spring Hypothesis for an Origin of Life. Astrobiology 2019, 20, 429–452. [Google Scholar] [CrossRef]
- Paranjpe, D.A.; Sharma, V.K. Evolution of temporal order in living organisms. J. Circadian Rhythm. 2005, 3, 7. [Google Scholar] [CrossRef] [PubMed]
- Campbell, B.A.; Campbell, D.B.; Carter, L.M.; Chandler, J.F.; Giorgini, J.D.; Margot, J.-L.; Morgan, G.A.; Nolan, M.C.; Perillat, P.J.; Whitten, J.L. The mean rotation rate of Venus from 29 years of Earth-based radar observations. Icarus 2019, 332, 19–23. [Google Scholar] [CrossRef]
- Margot, J.-L.; Campbell, D.B.; Giorgini, J.D.; Jao, J.S.; Snedeker, L.G.; Ghigo, F.D.; Bonsall, A. Spin state and moment of inertia of Venus. Nat. Astron. 2021, 5, 676–683. [Google Scholar] [CrossRef]
- Correia, A.C.M.; Laskar, J. The four final rotation states of Venus. Nature 2001, 411, 767–770. [Google Scholar] [CrossRef]
- Correia, A.C.M.; Laskar, J. Long-term evolution of the spin of Venus. II. Numerical simulations. Icarus 2003, 163, 24–45. [Google Scholar] [CrossRef]
- Correia, A.C.M.; Laskar, J.; de Surgy, O.N. Long-term evolution of the spin of Venus. I. Theory. Icarus 2003, 163, 1–23. [Google Scholar] [CrossRef]
- Chavan, A.G.; Swan, J.A.; Heisler, J.; Sancar, C.; Ernst, D.C.; Fang, M.; Palacios, J.G.; Spangler, R.K.; Bagshaw, C.R.; Tripathi, S.; et al. Reconstitution of an intact clock reveals mechanisms of circadian timekeeping. Science 2021, 374, eabd4453. [Google Scholar] [CrossRef]
- Kondo, T.; Tsinoremas, N.F.; Golden, S.S.; Hirschie Johnson, C.; Kutsuna, S.; Ishiura, M. Circadian Clock Mutants of Cyanobacteria. Science 1994, 266, 1233. [Google Scholar] [CrossRef] [PubMed]
- Kotsyurbenko, O.R.; Kompanichenko, V.N.; Brouchkov, A.V.; Khrunyk, Y.Y.; Karlov, S.P.; Sorokin, V.V.; Skladnev, D.A. Different Scenarios for the Origin and the Subsequent Succession of a Hypothetical Microbial Community in the Cloud Layer of Venus. Astrobiology 2024, 24, 423–441. [Google Scholar] [CrossRef]
- Bains, W.; Petkowski, J.J.; Rimmer, P.B.; Seager, S. Production of ammonia makes Venusian clouds habitable and explains observed cloud-level chemical anomalies. Proc. Natl. Acad. Sci. USA 2021, 118, e2110889118. [Google Scholar] [CrossRef]
- Bains, W.; Petkowski, J.J.; Seager, S. Venus’ Atmospheric Chemistry and Cloud Characteristics Are Compatible with Venusian Life. Astrobiology 2023, 24, 371–385. [Google Scholar] [CrossRef]
- Mogul, R.; Limaye, S.S.; Lee, Y.J.; Pasillas, M. Potential for Phototrophy in Venus’ Clouds. Astrobiology 2021. [Google Scholar] [CrossRef] [PubMed]
- Smirnova, T.V.; Kuz’min, A.D. Water-vapor and ammonia abundance in the lower atmosphere of Venus estimated from radar measurements. Sov. Astron. 1974, 18, 357. [Google Scholar]
- Wildt, R. Photochemistry of Planetary Atmospheres. Astrophys. J. 1937, 86, 321. [Google Scholar] [CrossRef]
- Surkov, Y.A.; Andreichikov, B.M.; Kalinkina, O.M. Ammonia content in the atmosphere of Venus according to data from the Venus-8 probe. Sov. Phys. Dokl. 1974, 18, 679. [Google Scholar]
- Cleland, C.E.; Rimmer, P.B. Ammonia and Phosphine in the Clouds of Venus as Potentially Biological Anomalies. Aerospace 2022, 9, 752. [Google Scholar] [CrossRef]
- Donahue, T.M.; Hodges, R.R. Venus methane and water. Geophys. Res. Lett. 1993, 20, 591–594. [Google Scholar] [CrossRef]
- Krissansen-Totton, J.; Bergsman, D.S.; Catling, D.C. On Detecting Biospheres from Chemical Thermodynamic Disequilibrium in Planetary Atmospheres. Astrobiology 2016, 16, 39–67. [Google Scholar] [CrossRef]
- Krissansen-Totton, J.; Olson, S.; Catling, D.C. Disequilibrium biosignatures over Earth history and implications for detecting exoplanet life. Sci. Adv. 2018, 4, eaao5747. [Google Scholar] [CrossRef]
- Clements, D.L. Venus Phosphine: Updates and lessons learned. arXiv 2024, arXiv:2409.13438. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, C.; Rong, H.; Zhao, M.; Wei, W.; Zhao, L. Study on Effects of Electron Donors on Phosphine Production from Anaerobic Activated Sludge. Water 2017, 9, 563. [Google Scholar] [CrossRef]
- Zahnle, K.; Schaefer, L.; Fegley, B. Earth’s earliest atmospheres. Cold Spring Harb Perspect Biol 2010, 2, a004895. [Google Scholar] [CrossRef] [PubMed]
- Olson, S.L.; Reinhard, C.T.; Lyons, T.W. Limited role for methane in the mid-Proterozoic greenhouse. Proc. Natl. Acad. Sci. USA 2016, 113, 11447–11452. [Google Scholar] [CrossRef]
- Encrenaz, T.; Greathouse, T.K.; Marcq, E.; Widemann, T.; Bézard, B.; Fouchet, T.; Giles, R.; Sagawa, H.; Greaves, J.; Sousa-Silva, C. A stringent upper limit of the PH3 abundance at the cloud top of Venus. Astron. Astrophys. 2020, 643, L5. [Google Scholar] [CrossRef]
- Greaves, J.S.; Richards, A.M.S.; Bains, W.; Rimmer, P.B.; Clements, D.L.; Seager, S.; Petkowski, J.J.; Sousa-Silva, C.; Ranjan, S.; Fraser, H.J. Re-analysis of Phosphine in Venus’ Clouds. arXiv 2020, arXiv:2011.08176. [Google Scholar]
- Greaves, J.S.; Bains, W.; Petkowski, J.J.; Seager, S.; Sousa-Silva, C.; Ranjan, S.; Clements, D.L.; Rimmer, P.B.; Fraser, H.J.; Mairs, S.; et al. On the Robustness of Phosphine Signatures in Venus’ Clouds. arXiv 2020, arXiv:2012.05844. [Google Scholar]
- Greaves, J.S.; Richards, A.M.S.; Bains, W.; Rimmer, P.B.; Clements, D.L.; Seager, S.; Petkowski, J.J.; Sousa-Silva, C.; Ranjan, S.; Fraser, H.J. Recovery of Spectra of Phosphine in Venus’ Clouds. arXiv 2021, arXiv:2104.09285. [Google Scholar]
- Cockell, C.S.; McMahon, S.; Biddle, J.F. When is Life a Viable Hypothesis? The Case of Venusian Phosphine. Astrobiology 2021, 21, 261. [Google Scholar] [CrossRef] [PubMed]
- Greaves, J.S.; Richards, A.M.S.; Bains, W.; Rimmer, P.B.; Clements, D.L.; Seager, S.; Petkowski, J.J.; Sousa-Silva, C.; Ranjan, S.; Fraser, H.J. Reply to: No evidence of phosphine in the atmosphere of Venus from independent analyses. Nat. Astron. 2021, 5, 636–639. [Google Scholar] [CrossRef]
- Bains, W.; Petkowski, J.J.; Seager, S.; Ranjan, S.; Sousa-Silva, C.; Rimmer, P.B.; Zhan, Z.; Greaves, J.S.; Richards, A.M.S. Phosphine on Venus Cannot Be Explained by Conventional Processes. Astrobiology 2021, 21. [Google Scholar] [CrossRef] [PubMed]
- Bains, W.; Petkowski, J.J.; Seager, S.; Ranjan, S.; Sousa-Silva, C.; Rimmer, P.B.; Zhan, Z.; Greaves, J.S.; Richards, A.M.S. Venusian phosphine: A ‘wow!’ signal in chemistry? In Phosphorus, Sulfur, and Silicon and the Related Elements; Taylor & Francis: Abingdon, UK, 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Trauger, J.T.; Lunine, J.I. Spectroscopy of molecular oxygen in the Atmospheres of Venus and Mars. Icarus 1983, 55, 272–281. [Google Scholar] [CrossRef]
- Nordheim, T.A.; Dartnell, L.R.; Desorgher, L.; Coates, A.J.; Jones, G.H. Ionization of the venusian atmosphere from solar and galactic cosmic rays. Icarus 2015, 245, 80–86. [Google Scholar] [CrossRef]
- Dartnell, L.R.; Nordheim, T.A.; Patel, M.R.; Mason, J.P.; Coates, A.J.; Jones, G.H. Constraints on a potential aerial biosphere on Venus: I. Cosmic rays. Icarus 2015, 257, 396–405. [Google Scholar] [CrossRef]
- Herbst, K.; Banjac, S.; Nordheim, T.A. Revisiting the cosmic-ray induced Venusian ionization with the Atmospheric Radiation Interaction Simulator (AtRIS). Astron. Astrophys. 2019, 624, A124. [Google Scholar] [CrossRef]
- Patel, M.R.; Mason, J.P.; Nordheim, T.A.; Dartnell, L.R. Constraints on a potential aerial biosphere on Venus: II. Ultraviolet radiation. Icarus 2022, 373, 114796. [Google Scholar] [CrossRef]
- Kotsyurbenko, O.R. Searching for Life on Venus: History of the Problem and Basic Concepts. Sol. Syst. Res. 2023, 57, 221–235. [Google Scholar] [CrossRef]
- Hallsworth, J.E.; Koop, T.; Dallas, T.D.; Zorzano, M.-P.; Burkhardt, J.; Golyshina, O.V.; Martín-Torres, J.; Dymond, M.K.; Ball, P.; McKay, C.P. Water activity in Venus’s uninhabitable clouds and other planetary atmospheres. Nat. Astron. 2021, 5, 665–675. [Google Scholar] [CrossRef]
- Rimmer, P.B.; Jordan, S.; Constantinou, T.; Woitke, P.; Shorttle, O.; Hobbs, R.; Paschodimas, A. Hydroxide Salts in the Clouds of Venus: Their Effect on the Sulfur Cycle and Cloud Droplet pH. Planet. Sci. J. 2021, 2, 133. [Google Scholar] [CrossRef]
- Mogul, R.; Limaye, S.S.; Way, M.J. The CO2 profile and analytical model for the Pioneer Venus Large Probe neutral mass spectrometer. Icarus 2023, 392, 115374. [Google Scholar] [CrossRef]
- Seager, S.; Petkowski, J.J.; Seager, M.D.; Grimes, J.H.; Zinsli, Z.; Vollmer-Snarr, H.R.; Abd El-Rahman, M.K.; Wishart, D.S.; Lee, B.L.; Gautam, V.; et al. Stability of nucleic acid bases in concentrated sulfuric acid: Implications for the habitability of Venus’ clouds. Proc. Natl. Acad. Sci. USA 2023, 120, e2220007120. [Google Scholar] [CrossRef]
- Seager, M.D.; Seager, S.; Bains, W.; Petkowski, J.J. Stability of 20 Biogenic Amino Acids in Concentrated Sulfuric Acid: Implications for the Habitability of Venus’ Clouds. Astrobiology 2024, 24. [Google Scholar] [CrossRef] [PubMed]
- Duzdevich, D.; Nisler, C.; Petkowski, J.J.; Bains, W.; Kaminsky, C.K.; Szostak, J.W.; Seager, S. Simple Lipids Form Stable Higher-Order Structures in Concentrated Sulfuric Acid. Astrobiology 2025, 25. [Google Scholar] [CrossRef]
- Petkowski, J.J.; Seager, S.; Seager, M.D.; Bains, W.; Marinus, N.; Poizat, M.; Plumet, C.; van Wiltenburg, J.; Visser, T.; Poelert, M. Astrobiological implications of the stability and reactivity of peptide nucleic acid (PNA) in concentrated sulfuric acid. Sci. Adv. 2025, 11, eadr0006. [Google Scholar] [CrossRef]
- Klein, H.P.; Lederberg, J.; Rich, A. Biological experiments: The viking Mars lander. Icarus 1972, 16, 139–146. [Google Scholar] [CrossRef]
- Levin, G.V.; Straat, P.A. The Case for Extant Life on Mars and Its Possible Detection by the Viking Labeled Release Experiment. Astrobiology 2016, 16, 798–810. [Google Scholar] [CrossRef]
- Klein, H.P.; Oyama, V.I.; Berdahl, B.J.; Carle, G.C.; Johnson, R.D.; Hobby, G.L.; Horowitz, N.H.; Straat, P.A.; Levin, G.V.; Lederberg, J.; et al. 2—The Viking Biological Investigation: Preliminary Results. In Comparative Planetology; Ponnamperuma, C., Ed.; Academic Press: Cambridge, MA, USA, 1978; pp. 7–26. [Google Scholar]
- McKay, D.S.; Gibson, E.K.; Thomas-Keprta, K.L.; Vali, H.; Romanek, C.S.; Clemett, S.J.; Chillier, X.D.F.; Maechling, C.R.; Zare, R.N. Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001. Science 1996, 273, 924–930. [Google Scholar] [CrossRef] [PubMed]
- Mittlefehldt, D.W. ALH 84001: A Cumulate Orthopyroxenite Member of the Martian Meteorite Clan. Meteoritics 1994, 29, 214. [Google Scholar] [CrossRef]
- Des Marais, D.J.; Nuth, J.A.; Allamandola, L.J.; Boss, A.P.; Farmer, J.D.; Hoehler, T.M.; Jakosky, B.M.; Meadows, V.S.; Pohorille, A.; Runnegar, B.; et al. The NASA Astrobiology Roadmap. Astrobiology 2008, 8, 715–730. [Google Scholar] [CrossRef]
- Barge, L.M.; Rodriguez, L.E.; Weber, J.M.; Theiling, B.P. Determining the “Biosignature Threshold” for Life Detection on Biotic, Abiotic, or Prebiotic Worlds. Astrobiology 2021, 22. [Google Scholar] [CrossRef] [PubMed]
- Seager, S.; Schrenk, M.; Bains, W. An Astrophysical View of Earth-Based Metabolic Biosignature Gases. Astrobiology 2012, 12, 61–82. [Google Scholar] [CrossRef]
- National Academies of Sciences, Medicine, Division on Engineering, Physical Sciences, Space Studies Board; Committee on Astrobiology Science Strategy for the Search for Life in the Universe. An Astrobiology Strategy for the Search for Life in the Universe; The National Academies Press: Washington, DC, USA, 2019; p. 188. [Google Scholar]
- Schwieterman, E.W.; Kiang, N.Y.; Parenteau, M.N.; Harman, C.E.; DasSarma, S.; Fisher, T.M.; Arney, G.N.; Hartnett, H.E.; Reinhard, C.T.; Olson, S.L.; et al. Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life. Astrobiology 2018, 18, 663–708. [Google Scholar] [CrossRef]
- Kiang, N.Y.; Domagal-Goldman, S.; Parenteau, M.N.; Catling, D.C.; Fujii, Y.; Meadows, V.S.; Schwieterman, E.W.; Walker, S.I. Exoplanet Biosignatures: At the Dawn of a New Era of Planetary Observations. Astrobiology 2018, 18, 619–629. [Google Scholar] [CrossRef]
- Vickers, P.; Cowie, C.; Dick, S.J.; Gillen, C.; Jeancolas, C.; Rothschild, L.J.; McMahon, S. Confidence of Life Detection: The Problem of Unconceived Alternatives. Astrobiology 2023, 23, 1202–1212. [Google Scholar] [CrossRef]
- Smith, H.B.; Mathis, C. Life detection in a universe of false positives. Bioessays 2023, 45, 2300050. [Google Scholar] [CrossRef]
- Wordsworth, R.D.; Kerber, L.; Pierrehumbert, R.T.; Forget, F.; Head, J.W. Comparison of “warm and wet” and “cold and icy” scenarios for early Mars in a 3-D climate model. J. Geophys. Res. Planets 2015, 120, 1201–1219. [Google Scholar] [CrossRef]
- Limaye, S.S.; Grassi, D.; Mahieux, A.; Migliorini, A.; Tellmann, S.; Titov, D. Venus Atmospheric Thermal Structure and Radiative Balance. Space Sci. Rev. 2018, 214, 102. [Google Scholar] [CrossRef]
- Peplowski, P.N.; Lawrence, D.J.; Wilson, J.T. Chemically distinct regions of Venus’s atmosphere revealed by measured N2 concentrations. Nat. Astron. 2020, 4, 947. [Google Scholar] [CrossRef]
- Lebonnois, S.; Schubert, G. The deep atmosphere of Venus and the possible role of density-driven separation of CO2 and N2. Nat. Geosci. 2017, 10, 473–477. [Google Scholar] [CrossRef]
- Lebonnois, S.; Schubert, G.; Kremic, T.; Nakley, L.M.; Phillips, K.G.; Bellan, J.; Cordier, D. An experimental study of the mixing of CO2 and N2 under conditions found at the surface of Venus. Icarus 2020, 338, 113550. [Google Scholar] [CrossRef]
- Hoffman, J.H.; Hodges, R.R.; Donahue, T.M.; McElroy, M.M. Composition of the Venus lower atmosphere from the Pioneer Venus mass spectrometer. J. Geophys. Res. 1980, 85, 7882–7890. [Google Scholar] [CrossRef]
- Surkov, I.A.; Andreichikov, B.M.; Kalinkina, O.M. Composition and structure of the cloud layer of Venus. In Proceedings of the Space Research XIV 1974, Sao Paolo, Brazil, June 1974; p. 673. [Google Scholar]
- Milojevic, T.; Treiman, A.H.; Limaye, S.S. Phosphorus in the Clouds of Venus: Potential for Bioavailability. Astrobiology 2021, 21, 1250–1263. [Google Scholar] [CrossRef]
- Avice, G.; Marty, B. Perspectives on Atmospheric Evolution from Noble Gas and Nitrogen Isotopes on Earth, Mars & Venus. Space Sci. Rev. 2020, 216, 36. [Google Scholar] [CrossRef]
- Gillmann, C.; Way, M.J.; Avice, G.; Breuer, D.; Golabek, G.J.; Höning, D.; Krissansen-Totton, J.; Lammer, H.; O’Rourke, J.G.; Persson, M.; et al. The Long-Term Evolution of the Atmosphere of Venus: Processes and Feedback Mechanisms. Space Sci. Rev. 2022, 218, 56. [Google Scholar] [CrossRef]
- Mogul, R.; Zolotov, M.Y.; Way, M.J.; Limaye, S.S.; Avice, G. Reassessing Venus’ Vertical Profiles for SO2, N2, and H2O Using Pioneer Venus Mass Spectra. In Proceedings of the Venus as a System, Venus, Albuquerque, NM, USA, 1–3 November 2023; p. 8040. [Google Scholar]
- Martin, A.N.; Stüeken, E.E.; Gehringer, M.M.; Markowska, M.; Vonhof, H.; Weyer, S.; Hofmann, A. Anomalous δ15N values in the Neoarchean associated with an abundant supply of hydrothermal ammonium. Nat. Commun. 2025, 16, 1873. [Google Scholar] [CrossRef]
- Limaye, S.S.; Watanabe, S.; Yamazaki, A.; Yamada, M.; Satoh, T.; Sato, T.M.; Nakamura, M.; Taguchi, M.; Fukuhara, T.; Imamura, T.; et al. Venus looks different from day to night across wavelengths: Morphology from Akatsuki multispectral images. Earth Planets Space 2018, 70, 24. [Google Scholar] [CrossRef]
- Esposito, L.W.; Knollenberg, R.G.; Marov, M.I.; Toon, O.B.; Turco, R.P.; Colin, L.; Donahue, T.M.; Moroz, V.I. The clouds and hazes of Venus. In Venus; Hunten, D.M., Ed.; University of Arizona Press: Tucson, AZ, USA, 1983; pp. 484–564. [Google Scholar]
- Jiang, C.Z.; Rimmer, P.B.; Lozano, G.G.; Tosca, N.J.; Kufner, C.L.; Sasselov, D.D.; Thompson, S.J. Iron-sulfur chemistry can explain the ultraviolet absorber in the clouds of Venus. Sci. Adv. 2024, 10, eadg8826. [Google Scholar] [CrossRef] [PubMed]
- Petkowski, J.J.; Seager, S.; Grinspoon, D.H.; Bains, W.; Ranjan, S.; Rimmer, P.B.; Buchanan, W.P.; Agrawal, R.; Mogul, R.; Carr, C.E. Astrobiological Potential of Venus Atmosphere Chemical Anomalies and Other Unexplained Cloud Properties. Astrobiology 2024, 24, 343–370. [Google Scholar] [CrossRef] [PubMed]
- Jessup, K.-L.; Marcq, E.; Mills, F.; Bertaux, J.-L.; Lee, Y.J.; Limaye, S.; Roman, A.; Yung, Y. Hubble’s Role in Studies of Venus’ Clouds, Climate and Habitability. In American Astronomical Society Meeting Abstracts# 232; American Astronomical Society: Washington, DC, USA, 2018; Volume 232, pp. 405–406. [Google Scholar]
- Marcq, E.; Lea Jessup, K.; Baggio, L.; Encrenaz, T.; Lee, Y.J.; Montmessin, F.; Belyaev, D.; Korablev, O.; Bertaux, J.-L. Climatology of SO2 and UV absorber at Venus’ cloud top from SPICAV-UV nadir dataset. Icarus 2020, 335, 113368. [Google Scholar] [CrossRef]
- Jessup, K.-L.; Marcq, E.; Bertaux, J.-L.; Mills, F.P.; Limaye, S.; Roman, A. On Venus’ cloud top chemistry, convective activity and topography: A perspective from HST. Icarus 2020, 335, 113372. [Google Scholar] [CrossRef]
- Lee, Y.J.; García Muñoz, A.; Yamazaki, A.; Yamada, M.; Watanabe, S.; Encrenaz, T. Investigation of UV Absorbers on Venus Using the 283 and 365 nm Phase Curves Obtained from Akatsuki. Geophys. Res. Lett. 2021, 48, e2020GL090577. [Google Scholar] [CrossRef]
- Lee, Y.J.; Muñoz, A.G.; Yamazaki, A.; Quémerais, E.; Mottola, S.; Hellmich, S.; Granzer, T.; Bergond, G.; Roth, M.; Gallego-Cano, E.; et al. Reflectivity of Venus’s Dayside Disk During the 2020 Observation Campaign: Outcomes and Future Perspectives. Planet. Sci. J. 2022, 3, 209. [Google Scholar] [CrossRef]
- Frandsen, B.N.; Wennberg, P.O.; Kjaergaard, H.G. Identification of OSSO as a near-UV absorber in the Venusian atmosphere. Geophys. Res. Lett. 2016, 43, 11. [Google Scholar] [CrossRef]
- Wu, Z.; Wan, H.; Xu, J.; Lu, B.; Lu, Y.; Eckhardt, A.K.; Schreiner, P.R.; Xie, C.; Guo, H.; Zeng, X. The near-UV absorber OSSO and its isomers. Chem. Commun. 2018, 54, 4517–4520. [Google Scholar] [CrossRef]
- Frandsen, B.N.; Farahani, S.; Vogt, E.; Lane, J.R.; Kjaergaard, H.G. Spectroscopy of OSSO and Other Sulfur Compounds Thought to be Present in the Venus Atmosphere. J. Phys. Chem. A 2020, 124, 7047–7059. [Google Scholar] [CrossRef]
- Egan, J.V.; Feng, W.; James, A.D.; Manners, J.; Marsh, D.R.; Lebonnois, S.; Lefèvre, F.; Stolzenbach, A.; Plane, J.M.C. Is OSSO a Significant Contributor to the Unknown UV Absorber in Venus’ Atmosphere? Geophys. Res. Lett. 2025, 52, e2024GL113090. [Google Scholar] [CrossRef]
- Pérez-Hoyos, S.; Sánchez-Lavega, A.; García-Muñoz, A.; Irwin, P.G.J.; Peralta, J.; Holsclaw, G.; McClintock, W.M.; Sanz-Requena, J.F. Venus Upper Clouds and the UV Absorber From MESSENGER/MASCS Observations. J. Geophys. Res. (Planets) 2018, 123, 145. [Google Scholar] [CrossRef]
- Allen, D.; Crawford, J. Cloud structure on the dark side of Venus. Nature 1984, 307, 222–224. [Google Scholar] [CrossRef]
- Satoh, T.; Sato, T.M.; Nakamura, M.; Kasaba, Y.; Ueno, M.; Suzuki, M.; Hashimoto, G.L.; Horinouchi, T.; Imamura, T.; Yamazaki, A.; et al. Performance of Akatsuki/IR2 in Venus orbit: The first year. Earth Planets Space 2017, 69, 154. [Google Scholar] [CrossRef]
- Pollack, J.B.; Dalton, J.B.; Grinspoon, D.; Wattson, R.B.; Freedman, R.; Crisp, D.; Allen, D.A.; Bezard, B.; de Bergh, C.; Giver, L.P.; et al. Near-Infrared Light from Venus’ Nightside: A Spectroscopic Analysis. Icarus 1993, 103, 1. [Google Scholar] [CrossRef]
- Crisp, D.; Allen, D.; Grinspoon, D.; Pollack, J. The dark side of Venus: Near-infrared images and spectra from the Anglo-Australian observatory. Science 1991, 253, 1263–1266. [Google Scholar] [CrossRef] [PubMed]
- Allen, D.; Crisp, D.; Meadows, V. Variable oxygen airglow on Venus as a probe of atmospheric dynamics. Nature 1992, 359, 516–519. [Google Scholar] [CrossRef]
- Gérard, J.-C.; Cox, C.; Saglam, A.; Bertaux, J.-L.; Villard, E.; Nehmé, C. Limb observations of the ultraviolet nitric oxide nightglow with SPICAV on board Venus Express. J. Geophys. Res. (Planets) 2008, 113. [Google Scholar] [CrossRef]
- Counselman, C.C.; Gourevitch, S.A.; King, R.W.; Loriot, G.B.; Ginsberg, E.S. Zonal and meridional circulation of the lower atmosphere of Venus determined by radio interferometry. J. Geophys. Res. 1980, 85, 8026. [Google Scholar] [CrossRef]
- Limaye, S.S.; Kovalenko, I.D. Monitoring Venus and communications relay from Lagrange Points. Planet. Space Sci. 2019, 179, 104710. [Google Scholar] [CrossRef]
- Yamazaki, A.; Yamada, M.; Lee, Y.J.; Watanabe, S.; Horinouchi, T.; Murakami, S.-y.; Kouyama, T.; Ogohara, K.; Imamura, T.; Sato, T.M.; et al. Ultraviolet imager on Venus orbiter Akatsuki and its initial results. Earth Planets Space 2018, 70, 23. [Google Scholar] [CrossRef]
- Khatuntsev, I.V.; Patsaeva, M.V.; Titov, D.V.; Zasova, L.V.; Ignatiev, N.I.; Gorinov, D.A. Twelve-Year Cycle in the Cloud Top Winds Derived from VMC/Venus Express and UVI/Akatsuki Imaging. Atmosphere 2022, 13, 2023. [Google Scholar] [CrossRef]
- Otroshchenko, V.A.; Surkov, Y.A. The possibility of organic molecule formation in the Venus atmosphere. Orig. Life 1974, 5, 487–490. [Google Scholar] [CrossRef] [PubMed]
- French, R.; Mandy, C.; Hunter, R.; Mosleh, E.; Sinclair, D.; Beck, P.; Seager, S.; Petkowski, J.J.; Carr, C.E.; Grinspoon, D.H.; et al. Rocket Lab Mission to Venus. Aerospace 2022, 9, 445. [Google Scholar] [CrossRef]
- Baumgardner, D.; Fisher, T.; Newton, R.; Roden, C.; Zmarzly, P.; Seager, S.; Petkowski, J.J.; Carr, C.E.; Špaček, J.; Benner, S.A.; et al. Deducing the Composition of Venus Cloud Particles with the Autofluorescence Nephelometer (AFN). Aerospace 2022, 9, 492. [Google Scholar] [CrossRef]
- Seager, S.; Petkowski, J.J.; Carr, C.E.; Grinspoon, D.H.; Ehlmann, B.L.; Saikia, S.J.; Agrawal, R.; Buchanan, W.P.; Weber, M.U.; French, R.; et al. Venus Life Finder Missions Motivation and Summary. Aerospace 2022, 9, 385. [Google Scholar] [CrossRef]
- Schulze-Makuch, D.; Irwin, L.N.; Irwin, T. Proposed Missions to Collect Samples for Analyzing Evidence of Life in the Venusian Atmosphere. Astrobiology 2024, 24, 397–406. [Google Scholar] [CrossRef]
- Polidan, R.S.; Lee, G.; Ross, F.; Sokol, D.; Bolisay, L. Venus Atmospheric Maneuverable Platform Science Mission. In Proceedings of the AAS/Division for Planetary Sciences Meeting Abstracts, Washington, DC, USA, 8–13 November 2015. [Google Scholar]
- Agrawal, R.; Seager, S.; Petkowski, J.J.; Carr, C.E.; Buchanan, W.P.; Bywaters, K.; de Jong, M.; Grinspoon, D.H.; Iakubivskyi, I.; King, I.R.; et al. Venus cloud sample return concept for astrobiology. Adv. Space Res. 2024, 74, 490–504. [Google Scholar] [CrossRef]
- Kane, S.; Kopparapu, R.; Domagal-Goldman, S.D. The Venus Zone: Seeking the Twin of Earth’s Twin. In Proceedings of the AGU Fall Meeting Abstracts, New Orleans, LA, USA, 11–15 December 2017; p. P52A-01. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Limaye, S.S. Life on Venus? Life 2025, 15, 717. https://doi.org/10.3390/life15050717
Limaye SS. Life on Venus? Life. 2025; 15(5):717. https://doi.org/10.3390/life15050717
Chicago/Turabian StyleLimaye, Sanjay S. 2025. "Life on Venus?" Life 15, no. 5: 717. https://doi.org/10.3390/life15050717
APA StyleLimaye, S. S. (2025). Life on Venus? Life, 15(5), 717. https://doi.org/10.3390/life15050717