SGLT2 Inhibitors and Liver Cirrhosis: Hype or Hope?
Abstract
1. Introduction
2. Biology and Pharmacology of SGLT2 and Its Inhibitors
3. Pathophysiology of Liver Cirrhosis and Its Complications
4. Therapeutic Role of SGLT2i in Cirrhosis
5. Biomarkers and Molecular Targets for Response Prediction
6. Risks and Uncertainties
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Mokdad, A.A.; Lopez, A.D.; Shahraz, S.; Lozano, R.; Mokdad, A.H.; Stanaway, J.; Murray, C.J.; Naghavi, M. Liver cirrhosis mortality in 187 countries between 1980 and 2010: A systematic analysis. BMC Med. 2014, 12, 145. [Google Scholar] [CrossRef]
- D’Amico, G.; Morabito, A.; D’Amico, M.; Pasta, L.; Malizia, G.; Rebora, P.; Valsecchi, M.G. New concepts on the clinical course and stratification of compensated and decompensated cirrhosis. Hepatol. Int. 2018, 12, 34–43. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, G.; Garcia-Tsao, G.; Pagliaro, L. Natural history and prognostic indicators of survival in cirrhosis: A systematic review of 118 studies. J. Hepatol. 2006, 44, 217–231. [Google Scholar] [CrossRef]
- Kashani, A.; Landaverde, C.; Medici, V.; Rossaro, L. Fluid retention in cirrhosis: Pathophysiology and management. QJM 2008, 101, 71–85. [Google Scholar] [CrossRef]
- Shen, I.; Stojanova, J.; Yeo, M.; Olsen, N.; Lockart, I.; Wang, M.; Roggeveld, J.; Heerspink, H.J.L.; Greenfield, J.R.; Day, R.; et al. A potential novel treatment for cirrhosis-related ascites: Empagliflozin is safe and tolerable in advanced chronic liver disease. Br. J. Clin. Pharmacol. 2024, 90, 2529–2538. [Google Scholar] [CrossRef] [PubMed]
- Saffo, S.; Taddei, T. SGLT2 inhibitors and cirrhosis: A unique perspective on the comanagement of diabetes mellitus and ascites. Clin. Liver Dis. 2018, 11, 141–144. [Google Scholar] [CrossRef]
- Carvalho, J.R.; Machado, M.V. New Insights About Albumin and Liver Disease. Ann. Hepatol. 2018, 17, 547–560. [Google Scholar] [CrossRef] [PubMed]
- ElBaset, M.A.; Salem, R.S.; Ayman, F.; Ayman, N.; Shaban, N.; Afifi, S.M.; Esatbeyoglu, T.; Abdelaziz, M.; Elalfy, Z.S. Effect of Empagliflozin on Thioacetamide-Induced Liver Injury in Rats: Role of AMPK/SIRT-1/HIF-1α Pathway in Halting Liver Fibrosis. Antioxidants 2022, 11, 2152. [Google Scholar] [CrossRef]
- Wright, E.M. SGLT2 Inhibitors: Physiology and Pharmacology. Kidney360 2021, 2, 2027–2037. [Google Scholar] [CrossRef]
- Nevola, R.; Villani, A.; Imbriani, S.; Alfano, M.; Criscuolo, L.; Beccia, D.; Ruocco, R.; Femine, A.D.; Gragnano, F.; Cozzolino, D.; et al. Sodium-Glucose Co-Transporters Family: Current Evidence, Clinical Applications and Perspectives. Front. Biosci.-Landmark 2023, 28, 103. [Google Scholar] [CrossRef]
- Ferrannini, E. Sodium-Glucose Co-transporters and Their Inhibition: Clinical Physiology. Cell Metab. 2017, 26, 27–38. [Google Scholar] [CrossRef]
- Nespoux, J.; Vallon, V. Renal effects of SGLT2 inhibitors: An update. Curr. Opin. Nephrol. Hypertens. 2020, 29, 190–198. [Google Scholar] [CrossRef]
- Novikov, A.; Vallon, V. Sodium glucose cotransporter 2 inhibition in the diabetic kidney: An update. Curr. Opin. Nephrol. Hypertens. 2016, 25, 50–58. [Google Scholar] [CrossRef]
- Tang, J.; Ye, L.; Yan, Q.; Zhang, X.; Wang, L. Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Water and Sodium Metabolism. Front. Pharmacol. 2022, 13, 800490. [Google Scholar] [CrossRef]
- Fonseca-Correa, J.I.; Correa-Rotter, R. Sodium-Glucose Cotransporter 2 Inhibitors Mechanisms of Action: A Review. Front. Med. 2021, 8, 777861. [Google Scholar] [CrossRef] [PubMed]
- Packer, M. Molecular, Cellular, and Clinical Evidence That Sodium-Glucose Cotransporter 2 Inhibitors Act as Neurohormonal Antagonists When Used for the Treatment of Chronic Heart Failure. J. Am. Heart Assoc. 2020, 9, e016270. [Google Scholar] [CrossRef]
- Abu-Hammour, M.-N.; Abdel-Razeq, R.; Vignarajah, A.; Khedraki, R.; Sims, O.T.; Vigneswaramoorthy, N.; Chiang, D.J. Sodium-Glucose Cotransporter 2 Inhibitors and Serious Liver Events in Patients With Cirrhosis. JAMA Netw. Open 2025, 8, e2518470. [Google Scholar] [CrossRef] [PubMed]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, 18. [Google Scholar] [CrossRef]
- Ndefo, U.A.; Anidiobi, N.O.; Basheer, E.; Eaton, A.T. Empagliflozin (Jardiance): A Novel SGLT2 Inhibitor for the Treatment of Type-2 Diabetes. P. T Peer-Rev. J. Formul. Manag. 2015, 40, 364–368. [Google Scholar]
- Lu, Q.; Li, X.; Liu, J.; Sun, X.; Rousselle, T.; Ren, D.; Tong, N.; Li, J. AMPK is associated with the beneficial effects of antidiabetic agents on cardiovascular diseases. Biosci. Rep. 2019, 39, BSR20181995. [Google Scholar] [CrossRef] [PubMed]
- Taheri, H.; Malek, M.; Ismail-Beigi, F.; Zamani, F.; Sohrabi, M.; Reza Babaei, M.; Khamseh, M.E. Effect of Empagliflozin on Liver Steatosis and Fibrosis in Patients With Non-Alcoholic Fatty Liver Disease Without Diabetes: A Randomized, Double-Blind, Placebo-Controlled Trial. Adv. Ther. 2020, 37, 4697–4708. [Google Scholar] [CrossRef]
- Abdel-latif, R.G.; Rifaai, R.A.; Amin, E.F. Empagliflozin alleviates neuronal apoptosis induced by cerebral ischemia/reperfusion injury through HIF-1α/VEGF signaling pathway. Arch. Pharm. Res. 2020, 43, 514–525. [Google Scholar] [CrossRef]
- Packer, M. Cardioprotective Effects of Sirtuin-1 and Its Downstream Effectors: Potential Role in Mediating the Heart Failure Benefits of SGLT2 (Sodium-Glucose Cotransporter 2) Inhibitors. Circ. Heart Fail. 2020, 13, e007197. [Google Scholar] [CrossRef]
- Siafarikas, C.; Kapelios, C.J.; Papatheodoridi, M.; Vlachogiannakos, J.; Tentolouris, N.; Papatheodoridis, G. Sodium–glucose linked transporter 2 inhibitors in liver cirrhosis: Beyond their antidiabetic use. Liver Int. 2024, 44, 884–893. [Google Scholar] [CrossRef]
- Singh, V.; De, A.; Aggrawal, R.; Singh, A.; Charak, S.; Bhagat, N. Safety and Efficacy of Dapagliflozin in Recurrent Ascites: A Pilot Study. Dig. Dis. Sci. 2025, 70, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Bakosh, M.F.; Ghazy, R.M.; Ellakany, W.I.; Kamal, A. Empagliflozin as a novel therapy for cirrhotic refractory ascites: A randomized controlled study. Egypt. Liver J. 2024, 14, 76. [Google Scholar] [CrossRef]
- Sano, R.; Shinozaki, Y.; Ohta, T. Sodium–glucose cotransporters: Functional properties and pharmaceutical potential. J. Diabetes Investig. 2020, 11, 770–782. [Google Scholar] [CrossRef]
- Poulsen, S.B.; Fenton, R.A.; Rieg, T. Sodium-glucose cotransport. Curr. Opin. Nephrol. Hypertens. 2015, 24, 463–469. [Google Scholar] [CrossRef]
- Watabe, E.; Kawanabe, A.; Kamitori, K.; Ichihara, S.; Fujiwara, Y. Sugar binding of sodium–glucose cotransporters analyzed by voltage-clamp fluorometry. J. Biol. Chem. 2024, 300, 107215. [Google Scholar] [CrossRef]
- Mateoc, T.; Dumitrascu, A.-L.; Flangea, C.; Puscasiu, D.; Vlad, T.; Popescu, R.; Marina, C.; Vlad, D.-C. SGLT2 Inhibitors: From Structure–Effect Relationship to Pharmacological Response. Int. J. Mol. Sci. 2025, 26, 6937. [Google Scholar] [CrossRef]
- Klimek, K.; Chen, X.; Sasaki, T.; Groener, D.; Werner, R.A.; Higuchi, T. PET imaging of sodium-glucose cotransporters (SGLTs): Unveiling metabolic dynamics in diabetes and oncology. Mol. Metab. 2024, 90, 102055. [Google Scholar] [CrossRef]
- Wright, E.M.; Loo, D.D.F.; Hirayama, B.A. Biology of Human Sodium Glucose Transporters. Physiol. Rev. 2011, 91, 733–794. [Google Scholar] [CrossRef]
- Zelniker, T.A.; Braunwald, E. Mechanisms of Cardiorenal Effects of Sodium-Glucose Cotransporter 2 Inhibitors. J. Am. Coll. Cardiol. 2020, 75, 422–434. [Google Scholar] [CrossRef]
- Wang, X.X.; Levi, J.; Luo, Y.; Myakala, K.; Herman-Edelstein, M.; Qiu, L.; Wang, D.; Peng, Y.; Grenz, A.; Lucia, S.; et al. SGLT2 Protein Expression Is Increased in Human Diabetic Nephropathy. J. Biol. Chem. 2017, 292, 5335–5348. [Google Scholar] [CrossRef]
- Srinivasan Sridhar, V.; Ambinathan, J.P.N.; Kretzler, M.; Pyle, L.L.; Bjornstad, P.; Eddy, S.; Cherney, D.Z.; Reich, H.N.; European Renal cDNA Bank (ERCB). Nephrotic Syndrome Study Network (NEPTUNE) Renal SGLT mRNA expression in human health and disease: A study in two cohorts. Am. J. Physiol. Ren. Physiol. 2019, 317, F1224–F1230. [Google Scholar] [CrossRef] [PubMed]
- DeFronzo, R.A.; Reeves, W.B.; Awad, A.S. Pathophysiology of diabetic kidney disease: Impact of SGLT2 inhibitors. Nat. Rev. Nephrol. 2021, 17, 319–334. [Google Scholar] [CrossRef] [PubMed]
- Talha, K.M.; Anker, S.D.; Butler, J. SGLT-2 Inhibitors in Heart Failure: A Review of Current Evidence. Int. J. Heart Fail. 2023, 5, 82. [Google Scholar] [CrossRef]
- Kashiwagi, A.; Maegawa, H. Metabolic and hemodynamic effects of sodium-dependent glucose cotransporter 2 inhibitors on cardio-renal protection in the treatment of patients with type 2 diabetes mellitus. J. Diabetes Investig. 2017, 8, 416–427. [Google Scholar] [CrossRef] [PubMed]
- Girardi, A.C.C.; Polidoro, J.Z.; Castro, P.C.; Pio-Abreu, A.; Noronha, I.L.; Drager, L.F. Mechanisms of heart failure and chronic kidney disease protection by SGLT2 inhibitors in nondiabetic conditions. Am. J. Physiol. Cell Physiol. 2024, 327, C525–C544. [Google Scholar] [CrossRef]
- Heerspink, H.J.L.; Perkins, B.A.; Fitchett, D.H.; Husain, M.; Cherney, D.Z.I. Sodium Glucose Cotransporter 2 Inhibitors in the Treatment of Diabetes Mellitus: Cardiovascular and Kidney Effects, Potential Mechanisms, and Clinical Applications. Circulation 2016, 134, 752–772. [Google Scholar] [CrossRef]
- Tsai, K.-F.; Chen, Y.-L.; Chiou, T.T.-Y.; Chu, T.-H.; Li, L.-C.; Ng, H.-Y.; Lee, W.-C.; Lee, C.-T. Emergence of SGLT2 Inhibitors as Powerful Antioxidants in Human Diseases. Antioxidants 2021, 10, 1166. [Google Scholar] [CrossRef]
- Cowie, M.R.; Fisher, M. SGLT2 inhibitors: Mechanisms of cardiovascular benefit beyond glycaemic control. Nat. Rev. Cardiol. 2020, 17, 761–772. [Google Scholar] [CrossRef]
- Gao, Y.-M.; Feng, S.-T.; Wen, Y.; Tang, T.-T.; Wang, B.; Liu, B.-C. Cardiorenal protection of SGLT2 inhibitors—Perspectives from metabolic reprogramming. eBioMedicine 2022, 83, 104215. [Google Scholar] [CrossRef]
- Pálsson, R.; Patel, U.D. Cardiovascular Complications of Diabetic Kidney Disease. Adv. Chronic Kidney Dis. 2014, 21, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Giri, B.; Dey, S.; Das, T.; Sarkar, M.; Banerjee, J.; Dash, S.K. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity. Biomed. Pharmacother. 2018, 107, 306–328. [Google Scholar] [CrossRef] [PubMed]
- Kawahito, S.; Kitahata, H.; Oshita, S. Problems associated with glucose toxicity: Role of hyperglycemia-induced oxidative stress. World J. Gastroenterol. 2009, 15, 4137–4142. [Google Scholar] [CrossRef]
- Chen, L.H.; Leung, P.S. Inhibition of the sodium glucose co-transporter-2: Its beneficial action and potential combination therapy for type 2 diabetes mellitus. Diabetes Obes. Metab. 2013, 15, 392–402. [Google Scholar] [CrossRef]
- Patel, T.A.; Zheng, H.; Patel, K.P. Sodium–Glucose Cotransporter 2 Inhibitors as Potential Antioxidant Therapeutic Agents in Cardiovascular and Renal Diseases. Antioxidants 2025, 14, 336. [Google Scholar] [CrossRef] [PubMed]
- Hsiang, J.C.; Wong, V.W.-S. SGLT2 Inhibitors in Liver Patients. Clin. Gastroenterol. Hepatol. 2020, 18, 2168–2172.e2. [Google Scholar] [CrossRef]
- Neal, B.; Perkovic, V.; Matthews, D.R. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 2097–2099. [Google Scholar] [CrossRef]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, Y.; Honda, A.; Yokose, S.; Nagata, M.; Miyamoto, J. The Effects of SGLT2 Inhibitors on Liver Cirrhosis Patients with Refractory Ascites: A Literature Review. J. Clin. Med. 2023, 12, 2253. [Google Scholar] [CrossRef]
- Liu, H.; Hao, Y.-M.; Jiang, S.; Baihetiyaer, M.; Li, C.; Sang, G.-Y.; Li, Z.; Du, G.-L. Evaluation of MASLD Fibrosis, FIB-4 and APRI Score in MASLD Combined with T2DM and MACCEs Receiving SGLT2 Inhibitors Treatment. Int. J. Gen. Med. 2024, 17, 2613–2625. [Google Scholar] [CrossRef]
- Jin, Z.; Yuan, Y.; Zheng, C.; Liu, S.; Weng, H. Effects of sodium-glucose co-transporter 2 inhibitors on liver fibrosis in non-alcoholic fatty liver disease patients with type 2 diabetes mellitus: An updated meta-analysis of randomized controlled trials. J. Diabetes Complicat. 2023, 37, 108558. [Google Scholar] [CrossRef]
- Wei, Q.; Xu, X.; Guo, L.; Li, J.; Li, L. Effect of SGLT2 Inhibitors on Type 2 Diabetes Mellitus With Non-Alcoholic Fatty Liver Disease: A Meta-Analysis of Randomized Controlled Trials. Front. Endocrinol. 2021, 12, 635556. [Google Scholar] [CrossRef]
- Albillos, A.; Martin-Mateos, R.; Van Der Merwe, S.; Wiest, R.; Jalan, R.; Álvarez-Mon, M. Cirrhosis-associated immune dysfunction. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 112–134. [Google Scholar] [CrossRef] [PubMed]
- Dhoop, S.; Shehada, M.; Sawaf, B.; Patel, M.; Roberts, L.; Smith, W.-L.; Hart, B. The Efficacy and Safety of Sodium-Glucose Cotransporter Protein 2 Inhibitors (SGLT2Is) in Liver Cirrhosis: A Systematic Review and Meta-Analysis. medRxiv 2024. [Google Scholar] [CrossRef]
- Xiao, L.; Dai, M.; Zhao, F.; Shen, Y.; Kwan, R.Y.C.; Salvador, J.T.; Zhang, L.; Luo, Y.; Liu, Q.; Yang, P. Assessing the risk factors associated with sarcopenia in patients with liver cirrhosis: A case–control study. Sci. Rep. 2023, 13, 21845. [Google Scholar] [CrossRef]
- Zhang, S.; Qi, Z.; Wang, Y.; Song, D.; Zhu, D. Effect of sodium-glucose transporter 2 inhibitors on sarcopenia in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Front. Endocrinol. 2023, 14, 1203666. [Google Scholar] [CrossRef] [PubMed]
- Tapper, E.B.; Parikh, N.D. Diagnosis and Management of Cirrhosis and Its Complications: A Review. JAMA 2023, 329, 1589. [Google Scholar] [CrossRef] [PubMed]
- Younas, A.; Riaz, J.; Chughtai, T.; Maqsood, H.; Saim, M.; Qazi, S.; Younus, S.; Ghaffar, U.; Khaliq, M. Hyponatremia and Its Correlation With Hepatic Encephalopathy and Severity of Liver Disease. Cureus 2021, 13, e13175. [Google Scholar] [CrossRef]
- Huang, L.; Han, H. Diuretic use in patients with cirrhosis and complications of portal hypertension: Should we rethink the use of furosemide as first line? Clin. Liver Dis. 2024, 23, e0090. [Google Scholar] [CrossRef]
- Huynh, D.J.; Renelus, B.D.; Jamorabo, D.S. Reduced mortality and morbidity associated with metformin and SGLT2 inhibitor therapy in patients with type 2 diabetes mellitus and cirrhosis. BMC Gastroenterol. 2023, 23, 450. [Google Scholar] [CrossRef]
- Saffo, S.; Kaplan, D.E.; Mahmud, N.; Serper, M.; John, B.V.; Ross, J.S.; Taddei, T. Impact of SGLT2 inhibitors in comparison with DPP4 inhibitors on ascites and death in veterans with cirrhosis on metformin. Diabetes Obes. Metab. 2021, 23, 2402–2408. [Google Scholar] [CrossRef]
- Gao, Y.; Wei, L.; Zhang, D.D.; Chen, Y.; Hou, B. SGLT2 Inhibitors: A New Dawn for Recurrent/Refractory Cirrhotic Ascites. J. Clin. Transl. Hepatol. 2021, 9, 795–797. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, Y.; Honda, A.; Yokose, S.; Nagata, M.; Miyamoto, J. Weaning from concentrated ascites reinfusion therapy for refractory ascites by SGLT2 inhibitor. Clin. Kidney J. 2022, 15, 831–833. [Google Scholar] [CrossRef] [PubMed]
- Kalambokis, G.N.; Tsiakas, I.; Filippas-Ntekuan, S.; Christaki, M.; Despotis, G.; Milionis, H. Empagliflozin Eliminates Refractory Ascites and Hepatic Hydrothorax in a Patient With Primary Biliary Cirrhosis. Am. J. Gastroenterol. 2021, 116, 618–619. [Google Scholar] [CrossRef]
- Montalvo-Gordon, I.; Chi-Cervera, L.A.; García-Tsao, G. Sodium-Glucose Cotransporter 2 Inhibitors Ameliorate Ascites and Peripheral Edema in Patients With Cirrhosis and Diabetes. Hepatology 2020, 72, 1880–1882. [Google Scholar] [CrossRef] [PubMed]
- Seidita, A.; Mandreucci, F.; Pistone, M.; Calderone, S.; Giuliano, A.; Chiavetta, M.; Giannitrapani, L.; Citarrella, R.; Soresi, M.; Licata, A.; et al. Sodium-glucose cotransporter 2 inhibition in patients with liver cirrhosis and diabetes: A possible role in ascites control? Ital. J. Med. 2024, 18. [Google Scholar] [CrossRef]
- Kalambokis, G.; Tsiakas, I.; Filippas-Ntekouan, S.; Christaki, M.; Milionis, H. Empagliflozin controls cirrhotic refractory ascites along with improvement of natriuresis and circulatory, cardiac, and renal function: A pilot study. Eur. J. Intern. Med. 2024, 130, 162–164. [Google Scholar] [CrossRef]
- Praveen, S.; Anikhindi, A.; Ashish, K.; Anil, A. Sodium glucose co-transporter-2 (SGLT) inhibitors in patients with compensated cirrhosis and diabetes: A prospective study. J. Clin. Images Med. Case Rep. 2023, 4, 2716. [Google Scholar] [CrossRef]
- Dhoop, S.; Ghazaleh, S.; Roberts, L.; Shehada, M.; Patel, M.; Smith, W.-L.; Rabeeah, S.; Sawaf, B.; Vadehra, P.; Hart, B.; et al. Sodium-Glucose Cotransporter-2 Inhibitors in Liver Cirrhosis: A Systematic Review of Their Role in Ascites Management, Slowing Disease Progression, and Safety. Int. J. Mol. Sci. 2025, 26, 4781. [Google Scholar] [CrossRef]
- Mansour, D.; McPherson, S. Management of decompensated cirrhosis. Clin. Med. 2018, 18, s60–s65. [Google Scholar] [CrossRef]
- Engelmann, C.; Clària, J.; Szabo, G.; Bosch, J.; Bernardi, M. Pathophysiology of decompensated cirrhosis: Portal hypertension, circulatory dysfunction, inflammation, metabolism and mitochondrial dysfunction. J. Hepatol. 2021, 75, S49–S66. [Google Scholar] [CrossRef]
- Roberts, L.R.; Kamath, P.S. Ascites and Hepatorenal Syndrome: Pathophysiology and Management. Mayo Clin. Proc. 1996, 71, 874–881. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, J.V.; Carrillo-Pérez, D.L.; Rosado-Canto, R.; García-Juárez, I.; Torre, A.; Kershenobich, D.; Carrillo-Maravilla, E. Electrolyte and Acid–Base Disturbances in End-Stage Liver Disease: A Physiopathological Approach. Dig. Dis. Sci. 2017, 62, 1855–1871. [Google Scholar] [CrossRef]
- Albillos, A.; Lario, M.; Álvarez-Mon, M. Cirrhosis-associated immune dysfunction: Distinctive features and clinical relevance. J. Hepatol. 2014, 61, 1385–1396. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, L.; Li, S.; Jia, P.; Deng, K.; Chen, W.; Sun, X. Effects of SGLT2 inhibitors on UTIs and genital infections in type 2 diabetes mellitus: A systematic review and meta-analysis. Sci. Rep. 2017, 7, 2824. [Google Scholar] [CrossRef]
- Puckrin, R.; Saltiel, M.-P.; Reynier, P.; Azoulay, L.; Yu, O.H.Y.; Filion, K.B. SGLT-2 inhibitors and the risk of infections: A systematic review and meta-analysis of randomized controlled trials. Acta Diabetol. 2018, 55, 503–514. [Google Scholar] [CrossRef]
- Al-Hindi, B.; Mohammed, M.A.; Mangantig, E.; Martini, N.D. Prevalence of sodium-glucose transporter 2 inhibitor-associated diabetic ketoacidosis in real-world data: A systematic review and meta-analysis. J. Am. Pharm. Assoc. 2024, 64, 9–26.e6. [Google Scholar] [CrossRef]
- Ata, F.; Yousaf, Z.; Khan, A.A.; Razok, A.; Akram, J.; Ali, E.A.H.; Abdalhadi, A.; Ibrahim, D.A.; Al Mohanadi, D.H.S.H.; Danjuma, M.I. SGLT-2 inhibitors associated euglycemic and hyperglycemic DKA in a multicentric cohort. Sci. Rep. 2021, 11, 10293. [Google Scholar] [CrossRef]
- Chandra, S.; Ravula, S.; Errabelli, P.; Spencer, H.; Singh, M. No Good Deed: Acidosis in Chronic Kidney and Liver Disease. J. Ren. Nutr. 2023, 33, 499–502. [Google Scholar] [CrossRef]
- Chao, H.-Y.; Kornelius, E. Two alcoholic liver cirrhosis patients developed diabetic ketoacidosis after SGLT2 inhibitors-prescription. J. Formos. Med. Assoc. 2020, 119, 1886–1887. [Google Scholar] [CrossRef]
- Mansour, M.M.; Obeidat, A.E.; Darweesh, M.; Mahfouz, R.; Kuwada, S.; Pyrsopoulos, N.T. The Impact of Cirrhosis on Outcomes of Patients Admitted With Diabetic Ketoacidosis: A Nationwide Study. Cureus 2022, 14, e25870. [Google Scholar] [CrossRef] [PubMed]
- Scheen, A.J. Pharmacokinetic and Pharmacodynamic Profile of Empagliflozin, a Sodium Glucose Co-Transporter 2 Inhibitor. Clin. Pharmacokinet. 2014, 53, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Enomoto, H.; Ueno, Y.; Hiasa, Y.; Nishikawa, H.; Hige, S.; Takikawa, Y.; Taniai, M.; Ishikawa, T.; Yasui, K.; Takaki, A.; et al. Transition in the etiology of liver cirrhosis in Japan: A nationwide survey. J. Gastroenterol. 2020, 55, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Adachi, T.; Takeuchi, Y.; Takaki, A.; Oyama, A.; Wada, N.; Onishi, H.; Shiraha, H.; Okada, H. Management of Cirrhotic Ascites under the Add-on Administration of Tolvaptan. Int. J. Mol. Sci. 2021, 22, 5582. [Google Scholar] [CrossRef]
- Jagdish, R.K.; Roy, A.; Kumar, K.; Premkumar, M.; Sharma, M.; Rao, P.N.; Reddy, D.N.; Kulkarni, A.V. Pathophysiology and management of liver cirrhosis: From portal hypertension to acute-on-chronic liver failure. Front. Med. 2023, 10, 1060073. [Google Scholar] [CrossRef]
- Fernandez, M. Molecular pathophysiology of portal hypertension. Hepatology 2015, 61, 1406–1415. [Google Scholar] [CrossRef]
- Zaccherini, G.; Tufoni, M.; Iannone, G.; Caraceni, P. Management of Ascites in Patients with Cirrhosis: An Update. J. Clin. Med. 2021, 10, 5226. [Google Scholar] [CrossRef] [PubMed]
- Airola, C.; Varca, S.; Del Gaudio, A.; Pizzolante, F. The Covert Side of Ascites in Cirrhosis: Cellular and Molecular Aspects. Biomedicines 2025, 13, 680. [Google Scholar] [CrossRef] [PubMed]
- Ross, E.A. Congestive Renal Failure: The Pathophysiology and Treatment of Renal Venous Hypertension. J. Card. Fail. 2012, 18, 930–938. [Google Scholar] [CrossRef] [PubMed]
- Hocher, B.; Heiden, S.; Von Websky, K.; Arafat, A.M.; Rahnenführer, J.; Alter, M.; Kalk, P.; Ziegler, D.; Fischer, Y.; Pfab, T. Renal Effects of the Novel Selective Adenosine A1 Receptor Blocker SLV329 in Experimental Liver Cirrhosis in Rats. PLoS ONE 2011, 6, e17891. [Google Scholar] [CrossRef][Green Version]
- Bernardi, M.; Moreau, R.; Angeli, P.; Schnabl, B.; Arroyo, V. Mechanisms of decompensation and organ failure in cirrhosis: From peripheral arterial vasodilation to systemic inflammation hypothesis. J. Hepatol. 2015, 63, 1272–1284. [Google Scholar] [CrossRef]
- Schrier, R.W.; Arroyo, V.; Bernardi, M.; Epstein, M.; Henriksen, J.H.; Rodés, J. Peripheral arterial vasodilation hypothesis: A proposal for the initiation of renal sodium and water retention in cirrhosis. Hepatology 1988, 8, 1151–1157. [Google Scholar] [CrossRef]
- Moore, C.M. Cirrhotic ascites review: Pathophysiology, diagnosis and management. World J. Hepatol. 2013, 5, 251. [Google Scholar] [CrossRef]
- Biggins, S.W.; Angeli, P.; Garcia-Tsao, G.; Ginès, P.; Ling, S.C.; Nadim, M.K.; Wong, F.; Kim, W.R. Diagnosis, Evaluation, and Management of Ascites, Spontaneous Bacterial Peritonitis and Hepatorenal Syndrome: 2021 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2021, 74, 1014–1048. [Google Scholar] [CrossRef]
- Kuiper, J.J.; De Man, R.A.; Van Buuren, H.R. Review article: Management of ascites and associated complications in patients with cirrhosis. Aliment. Pharmacol. Ther. 2007, 26, 183–193. [Google Scholar] [CrossRef]
- Helmy, A.; Newby, D.E.; Jalan, R.; Johnston, N.R.; Hayes, P.C.; Webb, D.J. Nitric oxide mediates the reduced vasoconstrictor response to angiotensin II in patients with preascitic cirrhosis. J. Hepatol. 2003, 38, 44–50. [Google Scholar] [CrossRef]
- Birney, Y.; Redmond, E.M.; Sitzmann, J.V.; Cahill, P.A. Eicosanoids in cirrhosis and portal hypertension. Prostaglandins Other Lipid Mediat. 2003, 72, 3–18. [Google Scholar] [CrossRef]
- Di Pascoli, M.; Sacerdoti, D.; Pontisso, P.; Angeli, P.; Bolognesi, M. Molecular Mechanisms Leading to Splanchnic Vasodilation in Liver Cirrhosis. J. Vasc. Res. 2017, 54, 92–99. [Google Scholar] [CrossRef]
- Bataller, R.; Sancho-bru, P.; Ginès, P.; Lora, J.M.; Al-garawi, A.; Solé, M.; Colmenero, J.; Nicolás, J.M.; Jiménez, W.; Weich, N.; et al. Activated human hepatic stellate cells express the renin-angiotensin system and synthesize angiotensin II. Gastroenterology 2003, 125, 117–125. [Google Scholar] [CrossRef]
- Yoon, K.T.; Liu, H.; Lee, S.S. Cirrhotic Cardiomyopathy. Curr. Gastroenterol. Rep. 2020, 22, 45. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, J.R.; Clouston, A.D.; Ando, Y.; Kelemen, L.I.; Horn, M.J.; Adamson, M.D.; Purdie, D.M.; Powell, E.E. Angiotensin-Converting Enzyme Inhibition Attenuates the Progression of Rat Hepatic Fibrosis. Gastroenterology 2001, 121, 148–155. [Google Scholar] [CrossRef]
- Kim, M.Y.; Cho, M.Y.; Baik, S.K.; Jeong, P.H.; Suk, K.T.; Jang, Y.O.; Yea, C.J.; Kim, J.W.; Kim, H.S.; Kwon, S.O.; et al. Beneficial effects of candesartan, an angiotensin-blocking agent, on compensated alcoholic liver fibrosis—A randomized open-label controlled study. Liver Int. 2012, 32, 977–987. [Google Scholar] [CrossRef] [PubMed]
- Shenoda, B.; Boselli, J. Vascular syndromes in liver cirrhosis. Clin. J. Gastroenterol. 2019, 12, 387–397. [Google Scholar] [CrossRef]
- Bosch, J.; Iwakiri, Y. The portal hypertension syndrome: Etiology, classification, relevance, and animal models. Hepatol. Int. 2018, 12, 1–10. [Google Scholar] [CrossRef]
- Bitto, N.; Ghigliazza, G.; Lavorato, S.; Caputo, C.; La Mura, V. Improving Management of Portal Hypertension: The Potential Benefit of Non-Etiological Therapies in Cirrhosis. J. Clin. Med. 2023, 12, 934. [Google Scholar] [CrossRef] [PubMed]
- Alvarado, E.; Garcia-Guix, M.; Mirabet, S.; Villanueva, C. The relationship of hyperdynamic circulation and cardiodynamic states in cirrhosis. J. Hepatol. 2018, 69, 746–747. [Google Scholar] [CrossRef] [PubMed]
- Iwakiri, Y.; Groszmann, R.J. The Hyperdynamic Circulation of Chronic Liver Diseases: From the Patient to the Molecule. Hepatology 2006, 43, S121–S131. [Google Scholar] [CrossRef]
- Iwakiri, Y.; Trebicka, J. Portal hypertension in cirrhosis: Pathophysiological mechanisms and therapy. JHEP Rep. 2021, 3, 100316. [Google Scholar] [CrossRef]
- Mura, V.L. Cirrhosis and portal hypertension: The importance of risk stratification, the role of hepatic venous pressure gradient measurement. World J. Hepatol. 2015, 7, 688. [Google Scholar] [CrossRef]
- De Franchis, R.; Bosch, J.; Garcia-Tsao, G.; Reiberger, T.; Ripoll, C.; Abraldes, J.G.; Albillos, A.; Baiges, A.; Bajaj, J.; Bañares, R.; et al. Baveno VII—Renewing consensus in portal hypertension. J. Hepatol. 2022, 76, 959–974. [Google Scholar] [CrossRef] [PubMed]
- Stachteas, P.; Nasoufidou, A.; Patoulias, D.; Karakasis, P.; Karagiannidis, E.; Mourtzos, M.-A.; Samaras, A.; Apostolidou, X.; Fragakis, N. The Role of Sodium-Glucose Co-Transporter-2 Inhibitors on Diuretic Resistance in Heart Failure. Int. J. Mol. Sci. 2024, 25, 3122. [Google Scholar] [CrossRef]
- Londono, M.-C.; Cardenas, A.; Guevara, M.; Quinto, L.; Heras, D.D.L.; Navasa, M.; Rimola, A.; Garcia-Valdecasas, J.-C.; Arroyo, V.; Gines, P. MELD score and serum sodium in the prediction of survival of patients with cirrhosis awaiting liver transplantation. Gut 2007, 56, 1283–1290. [Google Scholar] [CrossRef]
- Guevara, M.; Baccaro, M.E.; Torre, A.; Gómez-Ansón, B.; Ríos, J.; Torres, F.; Rami, L.; Monté-Rubio, G.C.; Martín-Llahí, M.; Arroyo, V.; et al. Hyponatremia Is a Risk Factor of Hepatic Encephalopathy in Patients With Cirrhosis: A Prospective Study With Time-Dependent Analysis. Am. J. Gastroenterol. 2009, 104, 1382–1389. [Google Scholar] [CrossRef]
- Vallon, V.; Verma, S. Effects of SGLT2 Inhibitors on Kidney and Cardiovascular Function. Annu. Rev. Physiol. 2021, 83, 503–528. [Google Scholar] [CrossRef]
- Weir, M.R.; Kline, I.; Xie, J.; Edwards, R.; Usiskin, K. Effect of canagliflozin on serum electrolytes in patients with type 2 diabetes in relation to estimated glomerular filtration rate (eGFR). Curr. Med. Res. Opin. 2014, 30, 1759–1768. [Google Scholar] [CrossRef]
- Ohara, K.; Masuda, T.; Morinari, M.; Okada, M.; Miki, A.; Nakagawa, S.; Murakami, T.; Oka, K.; Asakura, M.; Miyazawa, Y.; et al. The extracellular volume status predicts body fluid response to SGLT2 inhibitor dapagliflozin in diabetic kidney disease. Diabetol. Metab. Syndr. 2020, 12, 37. [Google Scholar] [CrossRef] [PubMed]
- Bailey, C.J.; Iqbal, N.; T’joen, C.; List, J.F. Dapagliflozin monotherapy in drug-naïve patients with diabetes: A randomized-controlled trial of low-dose range. Diabetes Obes. Metab. 2012, 14, 951–959. [Google Scholar] [CrossRef]
- Refardt, J.; Winzeler, B.; Meienberg, F.; Vogt, D.R.; Christ-Crain, M. Empagliflozin Increases Short-Term Urinary Volume Output in Artificially Induced Syndrome of Inappropriate Antidiuresis. Int. J. Endocrinol. 2017, 2017, 1–8. [Google Scholar] [CrossRef]
- Seman, L.; Macha, S.; Nehmiz, G.; Simons, G.; Ren, B.; Pinnetti, S.; Woerle, H.J.; Dugi, K. Empagliflozin (BI 10773), a Potent and Selective SGLT2 Inhibitor, Induces Dose-Dependent Glucosuria in Healthy Subjects. Clin. Pharmacol. Drug Dev. 2013, 2, 152–161. [Google Scholar] [CrossRef]
- Scheen, A.J. Pharmacodynamics, Efficacy and Safety of Sodium–Glucose Co-Transporter Type 2 (SGLT2) Inhibitors for the Treatment of Type 2 Diabetes Mellitus. Drugs 2015, 75, 33–59. [Google Scholar] [CrossRef]
- Masuda, T.; Muto, S.; Fukuda, K.; Watanabe, M.; Ohara, K.; Koepsell, H.; Vallon, V.; Nagata, D. Osmotic diuresis by SGLT2 inhibition stimulates vasopressin-induced water reabsorption to maintain body fluid volume. Physiol. Rep. 2020, 8, e14360. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, L.; Yuan, L.; Li, D.; Zhang, Y.; Zheng, R.; Liu, C.; Feng, X.; Li, Q.; Li, Q.; et al. Sodium-glucose co-transporter-2 inhibitors suppress atrial natriuretic peptide secretion in patients with newly diagnosed Type 2 diabetes. Diabet. Med. 2016, 33, 1732–1736. [Google Scholar] [CrossRef] [PubMed]
- Hallow, K.M.; Helmlinger, G.; Greasley, P.J.; McMurray, J.J.V.; Boulton, D.W. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes Obes. Metab. 2018, 20, 479–487. [Google Scholar] [CrossRef]
- Hu, K.; Goel, A.; Tarlow, B.; Cheng, X.; Kim, S.; Kim, W.R.; Kwo, P. Empagliflozin in Diuretic-Refractory Ascites (DRAin-Em): Results of a Single-Center Feasibility Study. J. Gen. Intern. Med. 2025, 40, 1680–1682. [Google Scholar] [CrossRef]
- Angeli, P.; Bernardi, M.; Villanueva, C.; Francoz, C.; Mookerjee, R.P.; Trebicka, J.; Krag, A.; Laleman, W.; Gines, P. EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis. J. Hepatol. 2018, 69, 406–460. [Google Scholar] [CrossRef] [PubMed]
- Nadim, M.K.; Kellum, J.A.; Forni, L.; Francoz, C.; Asrani, S.K.; Ostermann, M.; Allegretti, A.S.; Neyra, J.A.; Olson, J.C.; Piano, S.; et al. Acute kidney injury in patients with cirrhosis: Acute Disease Quality Initiative (ADQI) and International Club of Ascites (ICA) joint multidisciplinary consensus meeting. J. Hepatol. 2024, 81, 163–183. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, K.; Madan, S.; Prakash Bhatt, S.; Ansari, I.A.; Dutta, K.; Misra, A. Sodium-glucose cotransporter-2 inhibitors in patients with type 2 diabetes mellitus and moderate to severe hepatic fibrosis: A retrospective study. Clin. Nutr. ESPEN 2023, 57, 305–310. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Fujishima, Y.; Wakasugi, D.; Io, F.; Sato, Y.; Uchida, S.; Kitajima, Y. Effects of SGLT2 inhibitors on the onset of esophageal varices and extrahepatic cancer in type 2 diabetic patients with suspected MASLD: A nationwide database study in Japan. J. Gastroenterol. 2024, 59, 1120–1132. [Google Scholar] [CrossRef] [PubMed]
- Asada, S.; Kaji, K.; Nishimura, N.; Koizumi, A.; Matsuda, T.; Tanaka, M.; Yorioka, N.; Sato, S.; Kitagawa, K.; Namisaki, T.; et al. Tofogliflozin Delays Portal Hypertension and Hepatic Fibrosis by Inhibiting Sinusoidal Capillarization in Cirrhotic Rats. Cells 2024, 13, 538. [Google Scholar] [CrossRef]
- Lee, H.W.; Kim, K.H.; Ahn, S.H.; Lee, H.C.; Choi, J. The associations between fibrosis changes and liver-related events in patients with metabolic dysfunction-associated steatotic liver disease. Liver Int. 2024, 44, 1448–1455. [Google Scholar] [CrossRef]
- Smeijer, J.D.; Wasehuus, V.S.; Dhaun, N.; Górriz, J.L.; Soler, M.J.; Åstrand, M.; Mercier, A.-K.; Greasley, P.J.; Ambery, P.; Heerspink, H.J.L. Effects of Zibotentan Alone and in Combination with Dapagliflozin on Fluid Retention in Patients with CKD. J. Am. Soc. Nephrol. 2024, 35, 1381–1390. [Google Scholar] [CrossRef]
- Chung, S.W.; Moon, H.-S.; Shin, H.; Han, H.; Park, S.; Cho, H.; Park, J.; Hur, M.H.; Park, M.K.; Won, S.-H.; et al. Inhibition of sodium-glucose cotransporter-2 and liver-related complications in individuals with diabetes: A Mendelian randomization and population-based cohort study. Hepatology 2024, 80, 633–648. [Google Scholar] [CrossRef]
- Shabani, E.; Heidari, S.M.; Roozitalab, M.; Zarei, H.; Mirshekari, A.; Ebrahimi, S.; Ghorbani Doshantapeh, A.; Vatankhah, S.A.; Dehghani-ghorbi, M. Systematic review and meta-analysis of the association between the use of SGLT2 inhibitors and hepatocellular carcinoma. Immunopathol. Persa 2025, 11, e43765. [Google Scholar] [CrossRef]
- Aithal, G.P.; Palaniyappan, N.; China, L.; Härmälä, S.; Macken, L.; Ryan, J.M.; Wilkes, E.A.; Moore, K.; Leithead, J.A.; Hayes, P.C.; et al. Guidelines on the management of ascites in cirrhosis. Gut 2021, 70, 9–29. [Google Scholar] [CrossRef]
- Yumusak, O. Update on cirrhotic cardiomyopathy: From etiopathogenesis to treatment. Ann. Gastroenterol. 2024, 37, 1–11. [Google Scholar] [CrossRef]
- Faluk, M.; Wardhere, A.; Thakker, R.; Khan, F.A. SGLT2 inhibitors in heart failure with preserved ejection fraction. Curr. Probl. Cardiol. 2024, 49, 102388. [Google Scholar] [CrossRef] [PubMed]
- Nassif, M.E.; Windsor, S.L.; Borlaug, B.A.; Kitzman, D.W.; Shah, S.J.; Tang, F.; Khariton, Y.; Malik, A.O.; Khumri, T.; Umpierrez, G.; et al. The SGLT2 inhibitor dapagliflozin in heart failure with preserved ejection fraction: A multicenter randomized trial. Nat. Med. 2021, 27, 1954–1960. [Google Scholar] [CrossRef]
- Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Böhm, M.; Brunner–La Rocca, H.-P.; Choi, D.-J.; Chopra, V.; Chuquiure-Valenzuela, E.; et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N. Engl. J. Med. 2021, 385, 1451–1461. [Google Scholar] [CrossRef] [PubMed]
- Francoz, C.; Durand, F.; Kahn, J.A.; Genyk, Y.S.; Nadim, M.K. Hepatorenal Syndrome. Clin. J. Am. Soc. Nephrol. 2019, 14, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.-J.; Huang, H.-C.; Pun, C.K.; Chang, C.-C.; Chuang, C.-L.; Huang, Y.-H.; Hou, M.-C.; Lee, F.-Y. Sodium-Glucose Cotransporter-2 Inhibition Exacerbates Hepatic Encephalopathy in Biliary Cirrhotic Rats. J. Pharmacol. Exp. Ther. 2022, 383, 25–31. [Google Scholar] [CrossRef]
- Karagiannakis, D.S.; Papatheodoridis, G.; Vlachogiannakos, J. Recent Advances in Cirrhotic Cardiomyopathy. Dig. Dis. Sci. 2015, 60, 1141–1151. [Google Scholar] [CrossRef] [PubMed]
- Wiese, S.; Hove, J.D.; Bendtsen, F.; Møller, S. Cirrhotic cardiomyopathy: Pathogenesis and clinical relevance. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, H.J.; Abelmann, W.H. THE CARDIAC OUTPUT AT REST IN LAENNEC’S CIRRHOSIS 1. J. Clin. Investig. 1953, 32, 1025–1033. [Google Scholar] [CrossRef] [PubMed]
- Kazankov, K.; Holland-Fischer, P.; Andersen, N.H.; Torp, P.; Sloth, E.; Aagaard, N.K.; Vilstrup, H. Resting myocardial dysfunction in cirrhosis quantified by tissue Doppler imaging: Myocardial function in cirrhosis. Liver Int. 2011, 31, 534–540. [Google Scholar] [CrossRef]
- Kapelios, C.J.; Bonou, M.; Barmpagianni, A.; Tentolouris, A.; Tsilingiris, D.; Eleftheriadou, I.; Skouloudi, M.; Kanellopoulos, P.N.; Lambadiari, V.; Masoura, C.; et al. Early left ventricular systolic dysfunction in asymptomatic patients with type 1 diabetes: A single-center, pilot study. J. Diabetes Complicat. 2021, 35, 107913. [Google Scholar] [CrossRef]
- Enomoto, M.; Ishizu, T.; Seo, Y.; Yamamoto, M.; Suzuki, H.; Shimano, H.; Kawakami, Y.; Aonuma, K. Subendocardial Systolic Dysfunction in Asymptomatic Normotensive Diabetic Patients. Circ. J. 2015, 79, 1749–1755. [Google Scholar] [CrossRef]
- Nakai, H.; Takeuchi, M.; Nishikage, T.; Lang, R.M.; Otsuji, Y. Subclinical left ventricular dysfunction in asymptomatic diabetic patients assessed by two-dimensional speckle tracking echocardiography: Correlation with diabetic duration. Eur. J. Echocardiogr. 2009, 10, 926–932. [Google Scholar] [CrossRef]
- Gamaza-Chulián, S.; Díaz-Retamino, E.; González-Testón, F.; Gaitero, J.C.; Castillo, M.J.; Alfaro, R.; Rodríguez, E.; González-Caballero, E.; Martín-Santana, A. Effect of sodium-glucose cotransporter 2 (SGLT2) inhibitors on left ventricular remodelling and longitudinal strain: A prospective observational study. BMC Cardiovasc. Disord. 2021, 21, 456. [Google Scholar] [CrossRef]
- Kloza, M.; Krzyżewska, A.; Kozłowska, H.; Budziak, S.; Baranowska-Kuczko, M. Empagliflozin Plays Vasoprotective Role in Spontaneously Hypertensive Rats via Activation of the SIRT1/AMPK Pathway. Cells 2025, 14, 507. [Google Scholar] [CrossRef]
- Satyam, S.M.; Bairy, L.K.; Rehman, A.; Attia, M.; Ahmed, L.; Emad, K.; Jaafer, Y.; Bahaaeldin, A. Unlocking Synergistic Hepatoprotection: Dapagliflozin and Silymarin Combination Therapy Modulates Nuclear Erythroid 2-Related Factor 2/Heme Oxygenase-1 Pathway in Carbon Tetrachloride-Induced Hepatotoxicity in Wistar Rats. Biology 2024, 13, 473. [Google Scholar] [CrossRef]
- Fu, C.; Deng, L.; Zhu, X.; Wang, B.; Hu, B.; Xue, H.; Zeng, Q.; Zhang, Y. Empagliflozin Attenuates Liver Inflammation and Fibrosis in NAFLD: Evidence from Mendelian Randomization and Mouse Experiments. Curr. Issues Mol. Biol. 2025, 47, 846. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.J.; Park, J.; Lee, N.; Choi, S.-E.; Jeon, J.Y.; Han, S.J.; Kim, D.J.; Lee, K.W.; Kim, H.J. Empagliflozin Alleviates Hepatic Steatosis and Oxidative Stress via the NRF1 Pathway in High-Fat Diet-Induced Mouse Model of Metabolic Dysfunction-Associated Steatotic Liver Disease. Int. J. Mol. Sci. 2025, 26, 4054. [Google Scholar] [CrossRef]
- Suki, M.; Imam, A.; Amer, J.; Milgrom, Y.; Massarwa, M.; Hazou, W.; Tiram, Y.; Perzon, O.; Sharif, Y.; Sackran, J.; et al. SGLT2 Inhibitors in MASLD (Metabolic Dysfunction-Associated Steatotic Liver Disease) Associated with Sustained Hepatic Benefits, Besides the Cardiometabolic. Pharmaceuticals 2025, 18, 1118. [Google Scholar] [CrossRef]
- Nagayama, K.; Harada, R.; Ajima, H.; Orikasa, S.; Aoshima, M.; Oki, Y. SGLT2 inhibitor administration to two patients with diabetes mellitus with ascites due to cirrhosis. Endocrinol. Diabetes Metab. Case Rep. 2025, 2025, e250015. [Google Scholar] [CrossRef]
- Asakura-Kinoshita, M.; Masuda, T.; Oka, K.; Ohara, K.; Miura, M.; Morinari, M.; Misawa, K.; Miyazawa, Y.; Akimoto, T.; Shimada, K.; et al. Sodium–Glucose Cotransporter 2 Inhibitor Combined with Conventional Diuretics Ameliorate Body Fluid Retention without Excessive Plasma Volume Reduction. Diagnostics 2024, 14, 1194. [Google Scholar] [CrossRef]
- Stratina, E.; Stanciu, C.; Nastasa, R.; Zenovia, S.; Stafie, R.; Rotaru, A.; Cuciureanu, T.; Muzica, C.; Sfarti, C.; Girleanu, I.; et al. New Insights on Using Oral Semaglutide versus Dapagliflozin in Patients with Type 2 Diabetes and Metabolic Dysfunction-Associated Steatotic Liver Disease. Diagnostics 2024, 14, 1475. [Google Scholar] [CrossRef]
- González Campos, E.; Grover Páez, F.; Ramos Becerra, C.G.; Balleza Alejandri, L.R.; Suárez Rico, D.O.; Cardona Muñoz, E.G.; Pascoe González, S.; Ramos Zavala, M.G.; Beltrán Ramírez, A.; García Galindo, J.J.; et al. Empagliflozin Leads to Faster Improvement in Arterial Stiffness Compared to Dapagliflozin: A Double-Blind Clinical. Life 2025, 15, 802. [Google Scholar] [CrossRef]
- Qin, W.; Gao, Y.; Zhao, Y.; Bian, N.; Fan, W.; Wang, W.; Gao, Y.; Hu, Z. Complete Resolution of Refractory Ascites and Pleural Effusion with Sustained Improvement in Urinary Sodium Excretion in a Cirrhotic Patient Treated with Empagliflozin. J. Clin. Transl. Hepatol. 2025, 13, 701–704. [Google Scholar] [CrossRef] [PubMed]
- Vallon, V. State-of-the-Art-Review: Mechanisms of Action of SGLT2 Inhibitors and Clinical Implications. Am. J. Hypertens. 2024, 37, 841–852. [Google Scholar] [CrossRef]
- Packer, M.; Wilcox, C.S.; Testani, J.M. Critical Analysis of the Effects of SGLT2 Inhibitors on Renal Tubular Sodium, Water and Chloride Homeostasis and Their Role in Influencing Heart Failure Outcomes. Circulation 2023, 148, 354–372. [Google Scholar] [CrossRef]
- Nagai, K.; Morita, K.; Matsuo, K.; Tanaka, S. Contributing factors and clinical usefulness of spot urine glucose-to-creatinine ratio by sodium glucose cotransporter 2 inhibitors: A cross-sectional study. J. Nephrol. 2025, 38, 1707–1710. [Google Scholar] [CrossRef]
- Ferrannini, E.; Solini, A.; Baldi, S.; Scozzaro, T.; Polidori, D.; Natali, A.; Hansen, M.K. Role of Glycosuria in SGLT2 Inhibitor–Induced Cardiorenal Protection: A Mechanistic Analysis of the CREDENCE Trial. Diabetes 2024, 73, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Inzucchi, S.E.; Zinman, B.; Fitchett, D.; Wanner, C.; Ferrannini, E.; Schumacher, M.; Schmoor, C.; Ohneberg, K.; Johansen, O.E.; George, J.T.; et al. How Does Empagliflozin Reduce Cardiovascular Mortality? Insights From a Mediation Analysis of the EMPA-REG OUTCOME Trial. Diabetes Care 2018, 41, 356–363. [Google Scholar] [CrossRef]
- Sano, M.; Goto, S. Possible Mechanism of Hematocrit Elevation by Sodium Glucose Cotransporter 2 Inhibitors and Associated Beneficial Renal and Cardiovascular Effects. Circulation 2019, 139, 1985–1987. [Google Scholar] [CrossRef]
- Mazer, C.D.; Hare, G.M.T.; Connelly, P.W.; Gilbert, R.E.; Shehata, N.; Quan, A.; Teoh, H.; Leiter, L.A.; Zinman, B.; Jüni, P.; et al. Effect of Empagliflozin on Erythropoietin Levels, Iron Stores, and Red Blood Cell Morphology in Patients With Type 2 Diabetes Mellitus and Coronary Artery Disease. Circulation 2020, 141, 704–707. [Google Scholar] [CrossRef]
- Ferreira, J.P.; Anker, S.D.; Butler, J.; Filippatos, G.; Januzzi, J.L.; Schueler, E.; Panova-Noeva, M.; Wetzel, K.; Prochaska, J.; Pocock, S.J.; et al. Effect of Empagliflozin on the Mechanisms Driving Erythropoiesis and Iron Mobilization in Patients With Heart Failure. J. Am. Coll. Cardiol. 2025, 85, 1757–1770. [Google Scholar] [CrossRef] [PubMed]
- Cases, A.; Cigarrán, S.; Luis Górriz, J.; Nuñez, J. Effect of SGLT2 inhibitors on anemia and their possible clinical implications. Nefrol. Engl. Ed. 2024, 44, 165–172. [Google Scholar] [CrossRef]
- Sternlicht, H.K.; Bakris, G.L. Reductions in albuminuria with SGLT2 inhibitors: A marker for improved renal outcomes in patients without diabetes? Lancet Diabetes Endocrinol. 2020, 8, 553–555. [Google Scholar] [CrossRef] [PubMed]
- Packer, M. Hyperuricemia and Gout Reduction by SGLT2 Inhibitors in Diabetes and Heart Failure. J. Am. Coll. Cardiol. 2024, 83, 371–381. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, F.; Bai, Y.; Huang, L.; Zhong, Y.; Zhang, X. Effects of sodium-glucose cotransporter-2 (SGLT-2) inhibitors on serum uric acid levels in patients with chronic kidney disease: A systematic review and network meta-analysis. BMJ Open Diabetes Res. Care 2024, 12, e003836. [Google Scholar] [CrossRef]
- Darwish, D.; Kumar, P.; Urs, K.; Dave, S. Impact of SGLT-2 Inhibitors on Biomarkers of Heart Failure. Cells 2025, 14, 919. [Google Scholar] [CrossRef]
- Banjar, S.; Alharbi, S.; Omer, I.; Al Zaid, N.; Alghamdi, A.; Abuthiyab, N.; Alzahrani, A. Effect of sodium-glucose co-transporter 2 inhibitors (SGLT2i) on N-terminal pro-B-type natriuretic peptide (NT-proBNP) level and structural changes following myocardial infarction: A systematic review and meta-analysis. Int. J. Cardiol. 2024, 410, 132239. [Google Scholar] [CrossRef]
- Wang, N.; Wu, Z.; Ren, J.; Zheng, X.; Han, X. SGLT2 Inhibitors in Patients with Heart Failure: A Model-Based Meta-Analysis. Clin. Pharmacokinet. 2024, 63, 1667–1678. [Google Scholar] [CrossRef] [PubMed]
- Solà, E.; Kerbert, A.J.C.; Verspaget, H.W.; Moreira, R.; Pose, E.; Ruiz, P.; Cela, R.; Morales-Ruiz, M.; López, E.; Graupera, I.; et al. Plasma copeptin as biomarker of disease progression and prognosis in cirrhosis. J. Hepatol. 2016, 65, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Hartl, L.; Hintersteininger, M.; Simbrunner, B.; Jachs, M.; Hofer, B.S.; Bauer, D.J.M.; Dominik, N.; Schwarz, M.; Balcar, L.; Kramer, G.; et al. The Vasopressin Biomarker Copeptin is Linked to Systemic Inflammation and Refines Prognostication in Decompensated Cirrhosis. Clin. Gastroenterol. Hepatol. 2025, S1542356525004616. [Google Scholar] [CrossRef]
- Masuda, T.; Asakura-Kinoshita, M.; Oka, K.; Ohara, K.; Sakai, M.; Miura, M.; Misawa, K.; Hirai, K.; Morinari, M.; Akimoto, T.; et al. SGLT2 inhibitor requires co-administration with diuretics to effectively reduce interstitial fluid retention: The DAPA-BODY trial. Hypertens. Res. 2025. [Google Scholar] [CrossRef] [PubMed]
- Yoosuf, B.T.; Kt, M.F.; D P, S.; Saini, A.; Garg, P.; Medenica, S.; Dutta, P.; Bansal, D. Risk of genitourinary tract infections with SGLT-2 inhibitors in type 2 diabetes mellitus: A meta-analysis of randomised controlled trials and disproportionality analysis using FAERS. Endocrine 2025, 90, 439–452. [Google Scholar] [CrossRef]
- Wu, M.-Z.; Guo, R.; Chandramouli, C.; Liu, L.; Tung, A.M.-O.; Tsang, C.T.-W.; Tse, Y.-K.; Chan, Y.-H.; Lee, C.-H.; Huang, J.-Y.; et al. Urinary tract infection and continuation of sodium-glucose cotransporter-2 inhibitors in diabetic patients. Eur. Heart J. 2025, ehaf788. [Google Scholar] [CrossRef]
- Pan, R.; Zhang, Y.; Wang, R.; Xu, Y.; Ji, H.; Zhao, Y. Effect of SGLT-2 inhibitors on body composition in patients with type 2 diabetes mellitus: A meta-analysis of randomized controlled trials. PLoS ONE 2022, 17, e0279889. [Google Scholar] [CrossRef]
- Volpe, S.; Vozza, A.; Lisco, G.; Fanelli, M.; Racaniello, D.; Bergamasco, A.; Triggiani, D.; Pierangeli, G.; De Pergola, G.; Tortorella, C.; et al. Sodium-Glucose Cotransporter 2 Inhibitors Improve Body Composition by Increasing the Skeletal Muscle Mass/Fat Mass Ratio in Patients with Type 2 Diabetes: A 52-Week Prospective Real-Life Study. Nutrients 2024, 16, 3841. [Google Scholar] [CrossRef] [PubMed]
- Chow, E.; Clement, S.; Garg, R. Euglycemic diabetic ketoacidosis in the era of SGLT-2 inhibitors. BMJ Open Diabetes Res. Care 2023, 11, e003666. [Google Scholar] [CrossRef]
- Mistry, S.; Eschler, D.C. Euglycemic Diabetic Ketoacidosis Caused by SGLT2 Inhibitors and a Ketogenic Diet: A Case Series and Review of Literature. AACE Clin. Case Rep. 2021, 7, 17–19. [Google Scholar] [CrossRef] [PubMed]


| Study Type/Model | Population/Liver Context | SGLT2i | Key Findings | Safety | Ref |
|---|---|---|---|---|---|
| A. Preclinical/Translational | |||||
| Preclinical (CCl4 cirrhotic rat) | Experimental cirrhosis with portal hypertension | Tofogliflozin | Lower portal pressure/intrahepatic resistance; antifibrotic, anti-angiogenic, endothelial-supportive effects | No renal toxicity signal reported in study | [133] |
| Ex vivo vascular reactivity | Mesenteric arteries (hypertensive vs. control) | Empagliflozin (acute) | Direct vasorelaxation via SIRT1/AMPK-linked pathways; plausible splanchnic benefit | — | [153] |
| Preclinical (toxic injury/fibrosis) | Liver injury/fibrosis model | Class (e.g., empagliflozin) | Reduced oxidative/ER stress; antifibrotic and histologic improvement | — | [9] |
| Preclinical (hepatotoxicity) | Liver injury (non-cirrhotic) | Dapagliflozin ± hepatoprotective co-therapy | Enzyme and histologic improvements; antioxidant pathway activation | — | [154] |
| Mendelian randomization + mouse | Fibrosis risk (human MR) and NAFLD model (mouse) | Empagliflozin (mouse arm) | Genetic proxies linked to lower fibrosis/cirrhosis risk; reduced steatosis/fibrotic markers in mice | — | [155] |
| Mechanistic (HFD-MASLD mouse) | Early metabolic liver disease | Empagliflozin | Less steatosis; improved oxidative-stress signaling (NRF1 axis) | — | [156] |
| B. Clinical–Observational ( cirrhosis /MASLD and related) | |||||
| Retrospective cohort (propensity-matched) | Cirrhosis with T2DM (metformin users) | Class (add-on to metformin) | Association with fewer hepatic decompensation events and lower HCC risk | Observational; class-typical infections noted in background literature | [64] |
| Real-world cohort (propensity-matched) | MASLD (predominantly non-cirrhotic at baseline) | Class | Association with slower progression to advanced liver disease and better long-term survival | Observational signals; metabolic improvements consistent with class | [157] |
| Two case reports (longitudinal) | Decompensated cirrhosis with ascites and T2DM | Luseogliflozin | Clinically meaningful, durable ascites control; recurrence off-drug and improvement on re-challenge | No major AEs reported across extended follow-up in cases | [158] |
| C. Clinical–Interventional/PK–PD | |||||
| Open-label PK/PD and safety | ACLD (compensated and decompensated) | Empagliflozin | Expected glucosuric/natriuretic pharmacodynamics; supports feasibility in ACLD | Short-term safety acceptable; AE profile broadly class-consistent | [6] |
| Randomized controlled trial | Decompensated cirrhosis, refractory ascites (SoC vs. SoC + empagliflozin) | Empagliflozin | Add-on improved ascites control and reduced procedure need in the short term | Mostly mild AEs (e.g., cramps, hyponatraemia) overall acceptable in study window | [27] |
| Prospective comparative cohort (mechanistic decongestion) | CKD (non-liver)–fluid compartment analysis | Dapagliflozin ± conventional diuretics | Combo reduced interstitial/extracellular water with relative plasma-volume preservation (mechanistic relevance to ascites) | No excess RAAS/SNS activation with combination in study | [159] |
| Prospective head-to-head (non-cirrhotic) | MASLD with T2DM | Dapagliflozin vs. oral semaglutide | Both improved metabolic/liver measures; contextual support for liver-stiffness benefits earlier in disease | Expected class safety; no specific liver safety signal | [160] |
| Randomized, double-blind (non-liver; vascular) | Systemic hemodynamics in T2DM | Empagliflozin vs. dapagliflozin | Faster improvement in arterial stiffness (hemodynamic relevance to hyperdynamic circulation) | — | [161] |
| D. Reviews/Perspectives (context and trial design) | |||||
| Narrative/clinical perspective | Cirrhosis and ascites management context | Class | Summarizes emerging clinical signals for refractory ascites and outlines trial considerations | Emphasizes patient selection and monitoring in decompensation | [162] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brusnic, O.; Onisor, D.M.; Boicean, A.; Porr, C.; Sofonea, F.D.; Anderco, P.; Ichim, C. SGLT2 Inhibitors and Liver Cirrhosis: Hype or Hope? Life 2025, 15, 1788. https://doi.org/10.3390/life15121788
Brusnic O, Onisor DM, Boicean A, Porr C, Sofonea FD, Anderco P, Ichim C. SGLT2 Inhibitors and Liver Cirrhosis: Hype or Hope? Life. 2025; 15(12):1788. https://doi.org/10.3390/life15121788
Chicago/Turabian StyleBrusnic, Olga, Danusia Maria Onisor, Adrian Boicean, Corina Porr, Florin Daniel Sofonea, Paula Anderco, and Cristian Ichim. 2025. "SGLT2 Inhibitors and Liver Cirrhosis: Hype or Hope?" Life 15, no. 12: 1788. https://doi.org/10.3390/life15121788
APA StyleBrusnic, O., Onisor, D. M., Boicean, A., Porr, C., Sofonea, F. D., Anderco, P., & Ichim, C. (2025). SGLT2 Inhibitors and Liver Cirrhosis: Hype or Hope? Life, 15(12), 1788. https://doi.org/10.3390/life15121788

