The Connection between Neurophysiological Correlates of Trust and Distrust and Isolated HEXACO Dimensions
Abstract
:1. Introduction
2. Research Question and Hypotheses
3. Materials and Methods
3.1. Sampling
3.2. Stimuli
3.3. Electroencephalography (EEG)
3.4. HEXACO-60
3.5. Experimental Design
3.6. Statistical Analysis
4. Results
4.1. Results of the HEXACO-60
4.1.1. Honesty–Humility
4.1.2. Agreeableness
4.2. Inference Statistical Results
4.3. Event-Related Potentials (ERPs) and Topographical Maps
5. Discussion
6. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Benjamini–Hochberg Correction | ||
---|---|---|
p-Values | Ranks (i) | Pi ≤ (i/31) ×0.05 |
0.001 | 1 | 0.00161290 |
0.001 | 2 | 0.00322581 |
0.001 | 3 | 0.00483871 |
0.001 | 4 | 0.00645161 |
0.001 | 5 | 0.00806452 |
0.005 | 6 | 0.00967742 |
0.006 | 7 | 0.01129032 |
0.008 | 8 | 0.01290323 |
0.015 | 9 | 0.01451613 |
0.035 | 10 | 0.01612903 |
0.054 | 11 | 0.01774194 |
0.077 | 12 | 0.01935484 |
0.15 | 13 | 0.02096774 |
0.116 | 14 | 0.02258065 |
0.173 | 15 | 0.02419355 |
0.234 | 16 | 0.02580645 |
0.2 | 17 | 0.02741935 |
0.24 | 18 | 0.02903226 |
0.248 | 19 | 0.03064516 |
0.369 | 20 | 0.03225806 |
0.421 | 21 | 0.03387097 |
0.437 | 22 | 0.03548387 |
0.455 | 23 | 0.03709677 |
0.506 | 24 | 0.03870968 |
0.561 | 25 | 0.04032258 |
0.632 | 26 | 0.04193548 |
0.701 | 27 | 0.04354839 |
0.781 | 28 | 0.04516129 |
0.849 | 29 | 0.04677419 |
0.923 | 30 | 0.04838710 |
0.994 | 31 | 0.05000000 |
Box’M Test for Covariance Matrix Homogeneity | |
---|---|
Box’ M | 30.490 |
F | 0.951 |
df1 | 20 |
df2 | 510.561 |
Sig. | 0.522 |
Levene Test for Variance Homogeneity | |||||
---|---|---|---|---|---|
Levene Statistic | df1 | df2 | Sig. | ||
eco_V_F8_779 | Based on mean | 0.895 | 4 | 30 | 0.479 |
Based on median | 0.897 | 4 | 30 | 0.478 | |
Based on median and with adjusted df | 0.897 | 4 | 22,941 | 0.482 | |
Based on trimmed mean | 0.878 | 4 | 30 | 0.489 | |
eco_M_F8_779 | Based on mean | 2.424 | 4 | 30 | 0.070 |
Based on median | 1.820 | 4 | 30 | 0.151 | |
Based on median and with adjusted df | 1.820 | 4 | 19,189 | 0.166 | |
Based on trimmed mean | 2.404 | 4 | 30 | 0.072 | |
pol_V_F7_331 | Based on mean | 4.150 | 4 | 30 | 0.009 |
Based on median | 3.039 | 4 | 30 | 0.032 | |
Based on median and with adjusted df | 3.039 | 4 | 23,550 | 0.037 | |
Based on trimmed mean | 3.940 | 4 | 30 | 0.011 | |
pol_M_F7_331 | Based on mean | 1.541 | 4 | 30 | 0.216 |
Based on median | 1.425 | 4 | 30 | 0.250 | |
Based on median and with adjusted df | 1.425 | 4 | 18,672 | 0.265 | |
Based on trimmed mean | 1.523 | 4 | 30 | 0.221 |
Testing Normal Distribution | |||||||
---|---|---|---|---|---|---|---|
Agreeableness Category | Kolmogorov–Smirnov | Shapiro–Wilk | |||||
Statistic | df | Significance | Statistic | df | Significance | ||
F8: Eco. trust at 780 ms | 1.00 | 0.151 | 7 | 0.200 * | 0.932 | 7 | 0.571 |
2.00 | 0.174 | 23 | 0.068 | 0.923 | 23 | 0.077 | |
3.00 | 0.387 | 7 | 0.002 | 0.627 | 7 | 0.001 | |
F8: Eco. distrust at 780 ms | 1.00 | 0.193 | 7 | 0.200 * | 0.940 | 7 | 0.636 |
2.00 | 0.079 | 23 | 0.200 * | 0.968 | 23 | 0.644 | |
3.00 | 0.230 | 7 | 0.200 * | 0.894 | 7 | 0.298 | |
F7: Pol. trust at 330 ms | 1.00 | 0.199 | 7 | 0.200 * | 0.942 | 7 | 0.661 |
2.00 | 0.225 | 23 | 0.004 | 0.869 | 23 | 0.006 | |
3.00 | 0.210 | 7 | 0.200 * | 0.906 | 7 | 0.367 | |
F7: Pol. distrust at 330 ms | 1.00 | 0.240 | 7 | 0.200 * | 0.814 | 7 | 0.056 |
2.00 | 0.115 | 23 | 0.200 * | 0.962 | 23 | 0.506 | |
3.00 | 0.165 | 7 | 0.200 * | 0.924 | 7 | 0.497 |
Testing Normal Distribution | |||||||
---|---|---|---|---|---|---|---|
Honesty–Humility Category | Kolmogorov–Smirnov | Shapiro–Wilk | |||||
Statistic | df | Significance | Statistic | df | Significance | ||
F8: Eco. trust at 780 ms | 2.00 | 0.109 | 29 | 0.200 * | 0.985 | 29 | 0.938 |
3.00 | 0.273 | 7 | 0.125 | 0.809 | 7 | 0.050 | |
F8: Eco. distrust at 780 ms | 2.00 | 0.110 | 29 | 0.200 * | 0.973 | 29 | 0.641 |
3.00 | 0.271 | 7 | 0.129 | 0.837 | 7 | 0.094 | |
F7: Pol. trust at 330 ms | 2.00 | 0.135 | 29 | 0.188 | 0.955 | 29 | 0.239 |
3.00 | 0.137 | 7 | 0.200 * | 0.943 | 7 | 0.664 | |
F7: Pol. distrust at 330 ms | 2.00 | 0.119 | 29 | 0.200 * | 0.973 | 29 | 0.650 |
3.00 | 0.120 | 7 | 0.200 * | 0.964 | 7 | 0.856 |
Testing Normal Distribution | ||||||
---|---|---|---|---|---|---|
Neuronal Potentials | Kolmogorov–Smirnov | Shapiro–Wilk | ||||
Statistic | df | Significance | Statistic | df | Significance | |
F7: Eco_trust/distrust_330 | 0.081 | 37 | 0.200 * | 0.971 | 37 | 0.424 |
F7: Pol_trust/distrust_330 | 0.119 | 37 | 0.200 * | 0.957 | 37 | 0.166 |
F7: Eco_trust/distrust_780 | 0.122 | 37 | 0.183 | 0.971 | 37 | 0.426 |
F7: Pol_trust/distrust_780 | 0.189 | 37 | 0.002 | 0.837 | 37 | 0.000 |
F8: Eco_trust/distrust_330 | 0.187 | 37 | 0.002 | 0.886 | 37 | 0.001 |
F8: Pol_trust/distrust_330 | 0.158 | 37 | 0.020 | 0.842 | 37 | 0.000 |
F8: Eco_trust/distrust_780 | 0.211 | 37 | 0.000 | 0.655 | 37 | 0.000 |
F8: Pol_trust/distrust_780 | 0.130 | 37 | 0.114 | 0.953 | 37 | 0.123 |
P7: Eco_trust/distrust_330 | 0.083 | 37 | 0.200 * | 0.973 | 37 | 0.491 |
P7: Pol_trust/distrust_330 | 0.207 | 37 | 0.000 | 0.819 | 37 | 0.000 |
P7: Eco_trust/distrust_780 | 0.250 | 37 | 0.000 | 0.589 | 37 | 0.000 |
P7: Pol_trust/distrust_780 | 0.151 | 37 | 0.033 | 0.960 | 37 | 0.203 |
P8: Eco_trust/distrust_330 | 0.087 | 37 | 0.200 * | 0.983 | 37 | 0.829 |
P8: Pol_trust/distrust_330 | 0.260 | 37 | 0.000 | 0.787 | 37 | 0.000 |
P8: Eco_trust/distrust_780 | 0.269 | 37 | 0.000 | 0.560 | 37 | 0.000 |
P8: Pol_trust/distrust_780 | 0.140 | 37 | 0.064 | 0.970 | 37 | 0.400 |
Adidas | Puma | Nike | Apple | Samsung |
Huawei | ÖMV | Voestalpine | Strabag | WienEnergie |
Verbund | RalphLauren | CalvinKlein | Dior | Zara |
C&A | H&M | Gucci | Versace | LouisVuitton |
Burberry | Rolex | Omega | MarcoPolo | Esprit |
GAP | MichaelKors | Cartier | Swarowski | Peek&Cloppenburg |
BILLA | DM | Bipa | Spar | Hofer |
Penny | Lidl | Tesla | Bayer | Johnson&Johnson |
Pfizer | Moderna | Genericon | AstraZeneca | Nestle |
CocaCola | Pepsi | Starbucks | Chanel | |
Yahoo | Nescafe | Ford | Toyota | |
Disney | Netflix | Amazon | Microsoft | IBM |
SpaceX | Prada | Intel | Visa | L’oreal |
Firefox | Pringles | Ben&Jerrys | Knorr | TommyHilfiger |
Sony | LG | Ikea | Marlboro | Audi |
PayPal | Ottakringer | Heineken | Lego | Xiaomi |
ÖVP | SPÖ | Neos | FPÖ | Grüne |
BierPartei | KPÖ | MFG | Arbeiterkammer | ÖGK |
Nationalrat | Bundesrat | Parlament | Innenministerium | Außenministerium |
Gesundheitsministerium | Verteidigungsministerium | Finanzministerium | Justizministerium | Umweltministerium |
Kulturministerium | Landwirtschaftsministerium | Wirtschaftskammmer | Landwirtschaftskammer | Ärztekammer |
Apothekerkammer | Zahnärztekammer | Rechtsanwaltskammer | Industriellenvereinigung | Verfassungsgerichtshof |
Verwaltungsgerichtshof | ObersterGerichtshof | WKStA | U-Ausschuss | DerStandard |
DiePresse | HeuteZeitung | ÖsterreichZeitung | Kurier | OE24 |
ORF | KroneZeitung | KleineZeitung | SalzburgerNachrichten | WienerZeitung |
FalterZeitung | NewsZeitung | AugustinZeitung | DieTagespresse | Antifa |
DieIdentitären | IslamischerStaat | DieGrauenWölfe | AlQaida | Hamas |
Greenpeace | PETA | WWF | Global2000 | Alpenverein |
VierPfoten | Bundeskanzleramt | Bundespräsidentenamt | JUNOS | AktionsGemeinschaft |
VSSTÖ | GrasPartei | RingFreiheitlicheStudierende | KSV | Cartellverband |
Pensionistenverband | Bauernbund | Arbeitnehmerbund | Wirtschaftsbund | Seniorenbund |
KarlRennerInstitut | PolitischeAkademieÖVP | FreiheitlichesBIldungsInstitut | GrüneBildungswerkstatt | NEOSLab |
References
- Conzen, P. Eriksons Identitätspsychologie. In Grundpositionen Seines Werkes; Erikson, E.H., Ed.; Kohlhammer: Stuttgart, Deutschland, 2010; pp. 32–39. [Google Scholar]
- Deutsch, M. Trust and suspicion. J. Confl. Resolut. 1958, 2, 265–279. [Google Scholar] [CrossRef]
- Searle, J.R. The Construction of Social Reality; The Free Press: Los Angeles, CA, USA, 1995. [Google Scholar]
- Schweer, M.K.W. Vertrauen und Misstrauen im Kontext aktueller gesellschaftlicher Herausforderungen-zwei zentrale psychologische Regulatoren. In Facetten des Vertrauens und Misstrauens; Schweer, M.K.W., Ed.; Herausforderungen für das soziale Miteinander; Springer Fachmedien: Berlin/Heidelberg, Germany, 2022; pp. 1–16. [Google Scholar] [CrossRef]
- Lewicki, R.J.; Bunker, B.B. Trust in relationships: A model of development and decline. In Conflict, cooperation and justice. Essays Inspired by the Work of Morton Deutsch; Bunker, B.B., Rubin, J.Z., Eds.; Jossey-Bass: Hoboken, NJ, USA, 1995; pp. 133–173. [Google Scholar]
- Lewicki, R.J. Trust, trust development, and trust repair. In The Handbook of Conflict Resolution: Theory and Practice; Deutsch, M., Coleman, P.T., Marcus, E.C., Eds.; Wiley Publishing: Hoboken, NJ, USA, 2006; pp. 92–119. [Google Scholar]
- Sautermeister, J. Moral und Vertrauen. In Facetten des Vertrauens und Misstrauens; Schweer, M.K.W., Ed.; Herausforderungen für das Soziale Miteinander; Springer Fachmedien: Berlin/Heidelberg, Germany, 2022; pp. 57–69. [Google Scholar] [CrossRef]
- Baumgartner, T.; Heinrichs, M.; Vonlanthen, A.; Fischbacher, U.; Fehr, E. Oxytocin shapes the neural circuitry of trust and trust adaptation in humans. Neuron 2008, 58, 639–650. [Google Scholar] [CrossRef] [PubMed]
- Dimoka, A. What does the brain tell us about trust and distrust? Evidence from a functional neuroimaging study. MIS Q. 2010, 34, 373–396. [Google Scholar] [CrossRef]
- Winston, J.S.; Strange, B.A.; O’Doherty, J.; Dolan, R.J. Automatic and intentional brain responses during evaluation of trustworthiness of faces. Nat. Neurosci. 2002, 5, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Wisman-van der Teen, A.; Lemmers, J.I.L.J.; Oorschot, M.; Krabbendam, L. Exploring the association between social behaviour, trust, and its neural correlates in first episode psychosis patients and in individuals at clinical high risk for psychosis. Br. J. Clin. Psychol. 2021, 61, 629–646. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-T.; Fan, Y.-T.; Du, Y.-R.; Yang, T.-T.; Liu, H.-L.; Yen, N.-S.; Chen, S.-H.; Hsung, R.-M. How do acquired political identities influence our neural processing toward others within the context of a trust game? Front. Hum. Neurosci. 2018, 12, 23. [Google Scholar] [CrossRef] [PubMed]
- Krueger, F. (Ed.) The Neurobiology of Trust; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Riedl, R.; Javor, A. The biology of trust: Integrating evidence from genetics, endocrinology, and functional brain imaging. J. Neurosci. Psychol. Econ. 2012, 5, 63–91. [Google Scholar] [CrossRef]
- Schweer, M.K.W. Vertrauen und soziales Handeln: Eine differentialpsychologische Perspektive. In Vertrauen im Interkulturellen Kontext; Jammal, E., Ed.; VS Verlag: Wiesbaden, Germany, 2008; pp. 13–26. [Google Scholar]
- Blume, C.L.; Julia del Giudice, R.; Wislowska, M.; Heib, D.P.J.; Schabus, M. EEG oscillations reflect the complexity of social interactions in a non-verbal social cognition task using animated triangles. Neuropsychologia 2015, 75, 330–340. [Google Scholar] [CrossRef]
- Ohmann, K.; Stahl, J.; Mussweiler, T.; Kedia, G. Immediate relativity: EEG reveals early engagement of comparison in social information processing. J. Exp. Psychol. Gen. 2016, 145, 1512–1529. [Google Scholar] [CrossRef]
- Yuan, S.; Xu, M.; Zhao, J.; Zhu, Y.; Yang, D. Trust violations affect the emotional working memory updating: An event-related brain potential study. Int. J. Psychophysiol. 2022, 179, 67–76. [Google Scholar] [CrossRef]
- Walla, P.; Kalt, S.; and Külzer, D. Event-related potentials (ERPs) reveal that trust and distrust differ between brands and political institutions. In Proceedings NeuroIS Retreat 2023; Davis, F., Riedl, R., vom Brocke, J., Leger, P.M., Randolph, A.B., Müller-Putz, G.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–7. [Google Scholar]
- Ashton, M.C.; Lee, K. Empirical, theoretical, and practical advantages of the HEXACO model of personality structure. Personal. Soc. Psychol. Rev. 2007, 11, 150–166. [Google Scholar] [CrossRef] [PubMed]
- Costa, P.T.; McCrae, R.R. The five-factor model of personality and its relevance to personality disorders. J. Personal. Disord. 1992, 6, 343–359. [Google Scholar] [CrossRef]
- Rotter, J.B. Interpersonal trust, trustworthiness, and gullibility. Am. Psychol. 1980, 35, 1–7. [Google Scholar] [CrossRef]
- Mayer, R.C.; Davis, J.H.; Schoormann, F.D. An integrative model of trust development and decline. Acad. Manag. Rev. 1995, 20, 709–734. [Google Scholar] [CrossRef]
- Malich, L.; Munafò, M.R. Introduction: Replication of Crises-Interdisciplinary Reflections on the Phenomenon of the Replication Crisis in Psychology. Rev. Gen. Psychol. 2022, 26, 127–130. [Google Scholar] [CrossRef]
- Lewicki, R.J.; McAllister, D.J.; Bies, R.J. Trust and distrust. New relationships and realities. Acad. Manag. Rev. 1998, 23, 438–458. [Google Scholar] [CrossRef]
- Luhmann, N. Organisation und Entscheidung; Verlag für Sozialwissenschaften Wiesbaden: Wiesbaden, Germany, 2000. [Google Scholar] [CrossRef]
- Ashton, M.C.; Lee, K.; Son, C. Honesty as the sixth factor of personality: Correlations with Machiavellianism, primary psychopathy, and social adroitness. Eur. J. Personal. 2000, 14, 359–369. [Google Scholar] [CrossRef]
- Luhmann, N. Vertrauen: Ein Mechanismus der Reduktion sozialer Komplexität, 5th ed.; utb GmbH: Stuttgart, Germany, 2014. [Google Scholar] [CrossRef]
- Schweer, M.K. Vertrauen in der pädagogischen Beziehung; Verlag Hans Huber: Göttingen, Germany, 1996. [Google Scholar]
- Arnett, J.J. College students as emerging adults: The developmental implications of the college context. Emerg. Adulthood 2016, 4, 219–222. [Google Scholar] [CrossRef]
- Newman, B.M.; Newman, P.R. Development Through Life: A Psychosocial Approach; Cengage Learning: Boston, MA, USA, 2012. [Google Scholar]
- Bortz, J.; Schuster, C. Statistik für Human- und Sozialwissenschaftler, 7th ed.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Elif, M.; Negida, A. Sampling methods in Clinical Research; an Educational Review. Emergency 2017, 5, e52. [Google Scholar]
- Peirce, J.W.; Gray, J.R.; Simpson, S.; MacAskill, M.R.; Höchenberger, R.; Sogo, H.; Kastman, E.; Lindeløv, J. PsyhoPy2: Experiments in behavior made easy. Behav. Res. Methods 2019, 51, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Luck, S.; Kappenman, E. Electroencephalography and Event-Related Brain Potentials. In Handbook of Psychophysiology (Cambridge Handbooks in Psychology); Cacioppo, J., Tassinary, L., Berntson, G., Eds.; Cambridge University Press: Cambridge, UK, 2016; pp. 74–100. [Google Scholar] [CrossRef]
- Seeck, M.; Koessler, L.; Bast, T.; Leijten, F.; Michel, C.; Baumgartner, C.; He, B.; Beniczky, S. The standardized EEG electrode array of the IFCN. Clin. Neurophysiol. 2017, 128, 2070–2077. [Google Scholar] [CrossRef]
- Fulham, W.R. EEGDisplay, Version 6.1.5; University of Newcastle: Newcastle, Australia, 2009. [Google Scholar]
- Ashton, M.C.; Lee, K. The HEXACO-60: A short measure of the major dimensions of personality. J. Personal. Assess. 2009, 91, 340–345. [Google Scholar] [CrossRef] [PubMed]
- García, L.F.; Aluja, A.; Rossier, J.; Ostendorf, F.; Glicksohn, J.; Oumar, B.; Bellaj, T.; Ruch, W.; Wang, W.; Kövi, Z.; et al. Exploring the stability of HEXACO-60 structure and the association of gender, age, and social position with personality traits across 18 countries. J. Personal. 2022, 90, 256–276. [Google Scholar] [CrossRef]
- Ashton, M.C.; Lee, K.; Marcus, B.; De Vries, R.E. German lexical personality factors: Relations with the HEXACO Model. Eur. J. Personal. 2006, 21, 23–43. [Google Scholar] [CrossRef]
- Lees, S.; Dayan, N.; Cecotti, H.; McCullagh, P.; Maguire, L.; Lotte, F.; Coyle, D. A review of rapid serial visual presentation-based-brain computer interfaces. J. Neural Eng. 2018, 15, 021001. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Döring, N. Forschungsmethoden und Evaluation in den Sozial- und Humanwissenschaften, 6th ed.; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Zöfel, P. Test auf signifikante Unterschiede. In Statistik für Psychologen, 2nd ed.; Pearson Studium: Upper Saddle River, NJ, USA, 2003; pp. 118–122. [Google Scholar]
- Robinson, D.; Perryman, S.; Hayday, S. The Drivers of Employee Engagement, Institute for Employment Studies; Brighton: Brighton, UK, 2004. [Google Scholar]
- Guérin-Dugué, A.; Roy, R.N.; Kristensen, E.; Rivet, B.; Vercueil, L.; Tcherkassof, A. Temporal Dynamics of Natural Static Emotional Facial Expressions Decoding: A Study Using Event- and Eye Fixation-Related Potentials. Front. Psychol. 2018, 9, 1190. [Google Scholar] [CrossRef]
- Recio, G.; Sommer, W.; Schacht, A. Electrophysiological correlates of perceiving and evaluating static and dynamic facial emotional expressions. Brain Res. 2011, 1376, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Simola, J.; Le Fevre, K.; Torniainen, J.; Baccino, T. Affective processing in natural scene viewing: Valence and arousal interactions in eye-fixation-related potentials. Neuroimage 2015, 106, 21–33. [Google Scholar] [CrossRef]
- Armstrong, D.F.; Solomon, H.K. Brain Laterality Signed, And Spoken Language: A Synthetic Theory Of Language Use. J. Vis. Verbal Languaging 2018, 2, 17–36. [Google Scholar] [CrossRef]
- Harris, L.J. Sex Differences in Spatial Ability: Possible Environmental, Genetic and Neurological Factor, in Asymmetrical Function of the Brain; Kinsbourne, M., Ed.; Cambridge University Press: Cambridge, UK, 1978. [Google Scholar]
- Feng, C.; Wang, L.; Liu, C.; Zhu, X.; Dai, R.; Mai, X.; Luo, Y.-J. The Time Course of the Influence of Valence and Arousal on the Implicit Processing of Affective Pictures. PLoS ONE 2012, 7, e29668. [Google Scholar] [CrossRef]
- Bradley, M.M.; Codispoti, M.; Cuthbert, B.N.; Lang, P.J. Emotion and motivation I: Defensive and appetitive reactions in picture processing. Emotion 2001, 1, 276–298. [Google Scholar] [CrossRef]
- Rincon, A.J.; Shimoda, S. The inverse problem in electroencephalography using the bidomain model of electrical activity. J. Neurosci. Methods 2016, 274, 94–105. [Google Scholar] [CrossRef] [PubMed]
- VanderWeele, T.J.; Mathur, M.B. Some Desirable Properties of the Bonferroni Correction: Is the Bonferroni Correction Really So bad? Am. J. Epidemiol. 2019, 188, 617–618. [Google Scholar] [CrossRef] [PubMed]
- Baccino, T. Eye movements and concurrent event-related potentials: Eye fixation-related potential investigations in reading. In The Oxford Handbook of Eye Movements; Liversedge, S.P., Gilchrist, I., Everling, S., Eds.; Oxford University Press: Oxford, UK, 2011; pp. 732–870. [Google Scholar] [CrossRef]
- Kamienkowski, J.E.; Ison, M.J.; Quiroga, R.Q.; Sigman, M. Fixation-related potentials in visual search: A combined EEG and eye tracking study. J. Vis. 2012, 12, 4. [Google Scholar] [CrossRef] [PubMed]
Honesty–Humility Category | ||||||||
---|---|---|---|---|---|---|---|---|
Studied Psychology | Frequency | Percentage | Valid Percentage | Cumulated Percentage | ||||
No | Male | A-levels | Valid | Normal distribution | 11 | 91.7 | 91.7 | 91.7 |
High scores | 1 | 8.3 | 8.3 | 100.0 | ||||
Total | 12 | 100.0 | 100.0 | |||||
Higher-education institution | Valid | Normal distribution | 3 | 100.0 | 100.0 | 100.0 | ||
Female | Compulsory school | Valid | Normal distribution | 1 | 100.0 | 100.0 | 100.0 | |
A-levels | Valid | Normal distribution | 6 | 66.7 | 66.7 | 66.7 | ||
High scores | 3 | 33.3 | 33.3 | 100.0 | ||||
Total | 9 | 100.0 | 100.0 | |||||
Higher-education institution | Valid | Low scores | 1 | 33.3 | 33.3 | 33.3 | ||
High scores | 2 | 66.7 | 66.7 | 100.0 | ||||
Total | 3 | 100.0 | 100.0 | |||||
Yes | Male | A-levels | Valid | Normal distribution | 3 | 100.0 | 100.0 | 100.0 |
Higher-education institution | Valid | Normal distribution | 1 | 100.0 | 100.0 | 100.0 | ||
Female | A-levels | Valid | Normal distribution | 3 | 75.0 | 75.0 | 75.0 | |
High scores | 1 | 25.0 | 25.0 | 100.0 | ||||
Total | 4 | 100.0 | 100.0 | |||||
Higher-education institution | Valid | Normal distribution | 1 | 100.0 | 100.0 | 100.0 | ||
Total | Valid | Missing | Average Value | Standard deviation | 37 | 0 | 2.1622 | 0.4418 |
Agreeableness Category | ||||||||
---|---|---|---|---|---|---|---|---|
Studied Psychology | Frequency | Percentage | Valid Percentage | Cumulated Percentage | ||||
No | Male | A-levels | Valid | Low scores | 1 | 8.3 | 8.3 | 8.3 |
Normal distribution | 8 | 66.7 | 66.7 | 75 | ||||
High scores | 3 | 25.0 | 25.0 | 100.0 | ||||
Total | 12 | 100.0 | 100.0 | |||||
Higher-education institution | Valid | Normal distribution | 3 | 100.0 | 100.0 | 100.0 | ||
Female | Compulsory school | Valid | Normal distribution | 1 | 100.0 | 100.0 | 100.0 | |
A-levels | Valid | Low scores | 1 | 11.1 | 11.1 | 11.1 | ||
Normal distribution | 7 | 77.8 | 77.8 | 88.9 | ||||
High scores | 1 | 11.1 | 11.1 | 100.0 | ||||
Total | 9 | 100.0 | 100.0 | |||||
Higher-education institution | Valid | Low scores | 2 | 66.7 | 66.7 | 66.7 | ||
Normal distribution | 1 | 33.3 | 33.3 | 100.0 | ||||
Total | 3 | 100.0 | 100.0 | |||||
Yes | Male | A-levels | Valid | Low scores | 2 | 66.7 | 66.7 | 66.7 |
High scores | 1 | 33.3 | 33.3 | 100.0 | ||||
Total | 3 | 100.0 | 100.0 | |||||
Higher-education institution | Valid | Normal distribution | 1 | 100.0 | 100.0 | 100.0 | ||
Female | A-levels | Valid | Low scores | 1 | 25.0 | 25.0 | 25.0 | |
Normal distribution | 1 | 25.0 | 25.0 | 50.0 | ||||
High scores | 2 | 50.0 | 50.0 | 100.0 | ||||
Total | 4 | 100.0 | 100.0 | |||||
Higher-education institution | Valid | Normal distribution | 1 | 100.0 | 100.0 | 100.0 | ||
Total | Valid | Missing | Average Value | Standard deviation | 37 | 0 | 2.00 | 0.6236 |
Matched-Pair t-Test | ||||||||
---|---|---|---|---|---|---|---|---|
Paired Differences | ||||||||
Average Value | Standard Deviation | 95% Confidence Interval of the Differences | T | df | Sig. (2-Sides) | Cohen’s d | ||
Lowest Value | Highest Value | |||||||
F7: Brand trust vs. distrust at 330 ms | −0.075 | 2.389 | −0.872 | 0.721 | −0.191 | 0 | 0.849 | −0.031 |
F7: Pol. trust vs. distrust at 330 ms | 1.786 | 3.591 | 0.589 | 2.983 | 3.026 | 36 | 0.005 | 0.497 |
F7: Brand trust vs. distrust at 780 ms | −0.207 | 2.604 | −1.075 | 0.661 | −0.483 | 36 | 0.632 | −0.079 |
F8: Pol. trust vs. distrust at 780 ms | 0.508 | 2.552 | −0.343 | 1.359 | 1.211 | 36 | 0.234 | 0.199 |
P7: Brand trust vs. distrust at 330 ms | −0.261 | 2.362 | −1.048 | 0.527 | −0.672 | 36 | 0.506 | −0.11 |
F7: Pol. trust vs. distrust at 780 ms | 0.004 | 3.297 | −1.095 | 1.104 | 0.008 | 36 | 0.994 | 0.001 |
P8: Brand trust vs. distrust at 330 ms | −0.120 | 2.593 | −0.984 | 0.745 | −0.281 | 36 | 0.781 | −0.04 |
P8: Pol. trust vs. distrust at 780 ms | −0.052 | 3.262 | −1.140 | 1.035 | −0.097 | 36 | 0.923 | −0.02 |
Wilcoxon Test | ||||||||
---|---|---|---|---|---|---|---|---|
F7: Pol. Trust vs. Distrust at 780 ms | F8: Brand Trust vs. Distrust at 330 ms | F8: Brand Trust vs. Distrust at 780 ms | F8: Pol. Trust vs. Distrust at 330 ms | P7: Pol. Trust vs. Distrust at 330 ms | P7: Brand Trust vs. Distrust at 780 ms | P8: Pol. Trust vs. Distrust at 330 ms | P8: Brand Trust vs. Distrust at 780 ms | |
Z | −1.924 | −0.581 | −2.633 | −1.154 | −2.105 | −1.441 | −0.898 | −0.747 |
Asymp. Sig. (2 sides) | 0.054 | 0.561 | 0.008 | 0.248 | 0.035 | 0.150 | 0.369 | 0.455 |
Multivariate tests | ||||||
---|---|---|---|---|---|---|
Effect | Value | F | Treat df | Error df | Sig. | |
Honesty–Humility Category | Pillai–Bartlett trace ∑ | 0.864 | 5322 | 8000 | 56,000 | 0.000 |
Wilk’s lambda Λ | 0.281 | 5987 | 8000 | 54,000 | 0.000 | |
Hotelling’s trace T2 | 2.046 | 6649 | 8000 | 52,000 | 0.000 | |
Roy’s largest root θ | 1.752 | 12,262 | 4000 | 28,000 | 0.000 | |
Agreeableness Category | Pillai–Bartlett trace ∑ | 0.957 | 6,422 | 8000 | 56,000 | 0.000 |
Wilk’s lambda Λ | 0.179 | 9221 | 8000 | 54,000 | 0.000 | |
Hotelling’s trace T2 | 3.839 | 12,478 | 8000 | 52,000 | 0.000 | |
Roy’s largest root θ | 3.630 | 25,412 | 4000 | 28,000 | 0.000 | |
Honesty–Humility Category × Agreeableness Category * | Pillai–Bartlett trace ∑ | 0.920 | 5968 | 8000 | 56,000 | 0.000 |
Wilk’s lambda Λ | 0.159 | 10,191 | 8000 | 54,000 | 0.000 | |
Hotelling’s trace T2 | 4.800 | 15,600 | 8000 | 52,000 | 0.000 | |
Roy’s largest root θ | 4.694 | 32,857 | 4000 | 28,000 | 0.000 |
Tests of Between-Subject Effects | |||||||
---|---|---|---|---|---|---|---|
Source | Type III Sum of Squares | df | Mean Square | F | Sig. | Partial Eta-Square | |
Honesty–Humility Category | F8: Brand trust at 780 ms | 94,004 | 2 | 47,002 | 6.130 | 0.006 | 0.290 |
F8: Brand distrust at 780 ms | 75,778 | 2 | 37,889 | 4.806 | 0.015 | 0.243 | |
F7: Pol. trust at 330 ms | 45,953 | 2 | 22,976 | 1.858 | 0.173 | 0.110 | |
F7: Pol. distrust at 330 ms | 39,873 | 2 | 19,936 | 1.698 | 0.200 | 0.102 | |
Agreeableness Category | F8: Brand trust at 780 ms | 275,162 | 2 | 137,581 | 17.944 | 0.000 | 0.545 |
F8: Brand distrust at 780 ms | 14,059 | 2 | 7,029 | 0.892 | 0.421 | 0.056 | |
F7: Pol. trust at 330 ms | 69,027 | 2 | 34,513 | 2.791 | 0.077 | 0.157 | |
F7: Pol. distrust at 330 ms | 54,355 | 2 | 27,178 | 2.315 | 0.116 | 0.134 | |
Honesty–Humility Category × Agreeableness Category * | F8: Brand trust at 780 ms | 486,926 | 2 | 243,463 | 31.754 | 0.000 | 0.679 |
F8: Brand distrust at 780 ms | 5678 | 2 | 2839 | 0.360 | 0.701 | 0.023 | |
F7: Pol. trust at 330 ms | 37,001 | 2 | 18,501 | 1.496 | 0.240 | 0.091 | |
F7: Pol. distrust at 330 ms | 20,000 | 2 | 10,000 | 0.852 | 0.437 | 0.054 | |
Error | F8: Brand trust at 780 ms | 230,016 | 30 | 7667 | |||
F8: Brand distrust at 780 ms | 236,487 | 30 | 7883 | ||||
F7: Pol. trust at 330 ms | 370,943 | 30 | 12,365 | ||||
F7: Pol. distrust at 330 ms | 352,219 | 30 | 11,741 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Külzer, D.; Kalt, S.; Walla, P. The Connection between Neurophysiological Correlates of Trust and Distrust and Isolated HEXACO Dimensions. Life 2024, 14, 362. https://doi.org/10.3390/life14030362
Külzer D, Kalt S, Walla P. The Connection between Neurophysiological Correlates of Trust and Distrust and Isolated HEXACO Dimensions. Life. 2024; 14(3):362. https://doi.org/10.3390/life14030362
Chicago/Turabian StyleKülzer, Dimitrios, Stefan Kalt, and Peter Walla. 2024. "The Connection between Neurophysiological Correlates of Trust and Distrust and Isolated HEXACO Dimensions" Life 14, no. 3: 362. https://doi.org/10.3390/life14030362
APA StyleKülzer, D., Kalt, S., & Walla, P. (2024). The Connection between Neurophysiological Correlates of Trust and Distrust and Isolated HEXACO Dimensions. Life, 14(3), 362. https://doi.org/10.3390/life14030362