Skip Content
You are currently on the new version of our website. Access the old version .
MachinesMachines
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

3 February 2026

Design and Analysis of an Under-Actuated Adaptive Mechanical Gripper

,
and
School of Mechanical Engineering, North China University of Science and Technology, Tangshan 063210, China
*
Author to whom correspondence should be addressed.
This article belongs to the Section Machine Design and Theory

Abstract

Robotic grippers play a crucial role in pick-and-place tasks, as their performance directly affects the robot’s operational efficiency, stability, and safety. In industrial applications, such as coal gangue sorting, the target objects have irregular shapes and sharp surfaces, which pose challenges to the gripper’s grasping ability. To solve these problems, an adaptive under-actuated gripper based on rope control is designed. The gripper is simple to control and combines the excellent features of both rigid and flexible grippers. To analyze the characteristics of the gripper, both mathematical analysis and holding force experiments are conducted. The results show that the gripper can generate a greater holding force when grasping larger objects with a constant input air pressure. Furthermore, irregularly shaped testing objects, including coal lumps and ores, are selected to conduct grasping experiments. The gripper achieves a 100% grasping success rate with a load of up to four times the object’s weight suspended beneath it and shows the ability to reliably grasp irregularly shaped objects in high-speed pick-and-place tasks with a payload of four times the object’s weight. Meanwhile, the gripper has a passive anti-collision ability due to the special outer contour of the distal finger when subjected to unexpected, sudden force.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.