Automatic Compact High-Speed Industrial Postal Canceling Machine
Abstract
1. Introduction
2. Mechanical Design
2.1. General Description
2.2. Feeder Input Tray Mechanism
- Driving pulley: 37.4 mm diameter.
- Tensor pulley: 39.4 mm diameter.
- Guide pulleys: 39.4 mm and 2 × 18.0 mm diameter.
2.3. Belts and Transmission Mechanism
2.4. Vacuum System
2.5. Letter Capacity Analytical Model
- Calculate the linear speed of the feeding belt (input tray).
- 2.
- Calculate the angular speed of the stepper motor, considering the radius of the pulley ().
- 3.
- Define the frequency of the control signal considering the stepper motor controller speed rate () in pulses per revolution:
3. Electrical, Electronic, and Control Design
3.1. Electrical Power Supply
3.2. Electronic and Control
- Limit switch sensors: Detect the arrival of envelopes and verify their proper alignment before printing.
- Electrical actuators: Include motors that drive envelope transport, printing mechanisms, and ejection devices.
- Communication modules: Enable signal transmission between sensors, actuators, and the programmable logic controller (PLC).
- User interfaces: Buttons, screens, or indicator lights that allow the operator to start, stop, or monitor the process.
- Motion control: Regulation of motor speed and synchronization of feeding and ejection mechanisms.
- Printing control: Precise activation of printing when the envelope is in the correct position.
- Real-time monitoring: Continuous recording of sensor and actuator status for fault detection or abnormal conditions.
- Internal communication: Data exchange between the PLC and other electronic devices to maintain coordinated operation.
3.3. Control and Safety Logic
- Emergency stop button: Located on the front panel, it immediately cuts power to the motors and systems in case of an emergency.
- Blockage detection systems: If a jam is detected in the feeding or printing area, the machine automatically stops operation to prevent component damage.
- Mechanical protection: The machine features physical guards on all hazardous areas to prevent access to moving parts during operation.
- Presence sensors on covers and doors: If a guard is removed or a maintenance cover is opened, the machine shuts down until safe conditions are restored.
- Load control in trays: If the input tray is empty or the output tray is full, the system halts envelope processing to prevent overloading or printing failures.
4. Prototype Manufacturing and Assembly
5. Test
5.1. Letter Canceling Capacity Test
- Test 1: 129 mm/min printer belts linear speed and 228 mm/min input tray belt speed.
- Test 2: 145 mm/min printer belts linear speed and 318 mm/min input tray belt speed.
- Test 3: 145 mm/min printer belts linear speed and 372 mm/min input tray belt speed.
5.2. Letter Canceling Rate
- Test 1: 129 mm/min feed belt lineal and 228 mm/min input tray belt speed.
- Test 2: 145 mm/min feed belt lineal and 318 mm/min input tray belt speed.
5.3. Tests in Real Industrial Environments
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bard, J.F.; Morton, D.P.; Wang, Y.M. Workforce planning at USPS mail processing and distribution centers using stochastic optimization. Ann. Oper. Res. 2007, 155, 51–78. [Google Scholar] [CrossRef]
- Yang, Y.; Bard, J.F. Internal mail transport at processing & distribution centers. IISE Trans. 2017, 49, 285–303. [Google Scholar] [CrossRef]
- Lohmann, B. Throughput control for a transport process, and an application in postal automation machines. Control Eng. Pract. 1996, 4, 1503–1509. [Google Scholar] [CrossRef]
- Chang, T.; Jeong, H.; Seo, Y.; Lee, S. A Feasibility Study on Construction of Integrated Mail Processing System. J. Korea Acad. Coop. Soc. 2007, 7, 599–605. [Google Scholar]
- Park, J.-H. A Study on the Maintenance System for Mail Sorting Machine. J. Korea Acad. Coop. Soc. 2009, 10, 3200–3206. [Google Scholar] [CrossRef]
- Iberahim, H.; Mazlinda, H.; Marhainie, M.D.; Hidayah, A.N. Determinants of Sustainable Continuous Improvement Practices in Mail Processing Service Operations. Procedia—Soc. Behav. Sci. 2016, 219, 330–337. [Google Scholar] [CrossRef]
- Júdice, J.; Martins, P.; Nunes, J. Workforce planning in a lotsizing mail processing problem. Comput. Oper. Res. 2005, 32, 3031–3058. [Google Scholar] [CrossRef]
- Zhang, X.; Bard, J.F. Equipment scheduling at mail processing and distribution centers. IIE Trans. 2005, 37, 175–187. [Google Scholar] [CrossRef]
- Wan, L.; Lin, F. Simulation and Experimental Study on Indentation Rolling Resistance of a Belt Conveyor. Machines 2024, 12, 778. [Google Scholar] [CrossRef]
- Čepica, D.; Frydrýšek, K.; Hrabovský, L.; Nikodým, M. Experimental and Stochastic Application of an Elastic Foundation in Loose Material Transport via a Sandwich Belt Conveyor. Machines 2023, 11, 715. [Google Scholar] [CrossRef]
- Hrabovský, L.; Nenička, P.; Fries, J. Laboratory Machine Verification of Force Transmission Provided by Friction Acting on the Drive Drum of a Conveyor Belt. Machines 2023, 11, 544. [Google Scholar] [CrossRef]
- Manin, L.; Braun, S.; Hugues, D. Modelling the belt—Envelope interactions during the postal mail conveying by a sorting machine. Stroj. Vestnik/J. Mech. Eng. 2016, 62, 463–470. [Google Scholar] [CrossRef]
- Esnoz-Larraya, J.; Valiente-Blanco, I.; Cristache, C.; Sanchez, J.; Rodriguez-Celis, F.; Diez-Jimenez, E.; Perez-Diaz, J.L. OPTIMAGDRIVE: High performance magntic gears development for space applications. In Proceedings of the 17th European Space Mechanisms and Tribology Symposium, Hatfield, UK, 20–22 September 2017; pp. 1–5. [Google Scholar]
- Diez-Jimenez, E.; Alén-Cordero, C.; Alcover-Sánchez, R.; Corral-Abad, E. Modelling and test of an integrated magnetic spring-eddy current damper for space applications. Actuators 2021, 10, 8. [Google Scholar] [CrossRef]
- Diez-Jimenez, E.; Sugiura, T.; Rizzo, R.; Gómez-García, M.J.; Fleming, A. Electromagnetic Techniques for Vibration Damping and Isolation. Shock Vib. 2019, 2019, 9139067. [Google Scholar] [CrossRef]
- Beneduce, S.; Vita, L.; Cantone, L.; Caputo, F. Machinery Regulation and Remanufacturing: A Link Between Machinery Safety and Sustainability. Machines 2024, 12, 941. [Google Scholar] [CrossRef]
Belt | Material (Back/Front) | Frict. Coef. vs. Pshd. Steel (Back/Front) | Max Allowed Tension [N] | Length [mm] | Width [mm] | Thickness [mm] |
---|---|---|---|---|---|---|
Double belt | Polyamide fabric/Elastomer G | 0.3/0.5 | 80 | 500 | 8 | 3.5 |
Vacuum belt | Polyamide fabric/Elastomer G | 0.3/0.5 | 400 | 350 | 40 | 3 |
Driving belt | Polyester/Thermoplastic Polyurethane | 0.2/0.6 | 200 | 1250 | 25 | 1.7 |
Feed belt | Natural rubber (Linatex 3) | 1.5/1.5 | 280 | 435 | 20 | 3 |
Printer belt 1 | Polyester/ Chloroethylene | 0.1/0.3 | 100 | 1270 | 25 | 1 |
Printer belt 2 | Polyester/ Chloroethylene | 0.1/0.3 | 100 | 1340 | 25 | 1 |
Ring belt | Nitrile | - | - | 90 | 3.5 | 3.5 |
Input tray belt | Polyester/Thermoplastic Polyurethane | 0.2/0.6 | 375 | 1460 | 125 | 1.4 |
Type of Letter | DL | C4 | C5 | C6 |
---|---|---|---|---|
Letter length, [m] | 0.23 | 0.33 | 0.23 | 0.16 |
Letter thickness, [mm] | 1.20 | 2.00 | 1.20 | 1.50 |
Lower thickness variability | 0.20 | 0.50 | 0.20 | 0.50 |
Upper thickness variability | 0.80 | 0.50 | 0.80 | 1.00 |
Linear printing belt speed [m/min] | 145 | 145 | 145 | 145 |
Ideal letter spacing [m] | 0.18 | 0.22 | 0.18 | 0.18 |
Realistic letter spacing [m] letters per hour | 0.25 | 0.31 | 0.25 | 0.25 |
Letters per hour, maximum theoretical | 21,219 | 15,963 | 21,219 | 25,588 |
Letters per hour, realistic theoretical | 18,049 | 13,744 | 18,049 | 21,116 |
Feeder speed required, theoretical max [mm/min] | 424 | 532 | 424 | 639 |
Feeder speed rate required, theoretical realistic [mm/min] | 361 | 458 | 361 | 527 |
Letters and Combinations | No. Letters | Time (s) | Capacity (Letters/Hour) | ||||
---|---|---|---|---|---|---|---|
Test 1 | Test 2 | Test 3 | Test 1 | Test 2 | Test 3 | ||
DL | 90 | 30.89 | 20.42 | 16.65 | 10,488 | 15,864 | 19,459 |
C4 | 30 | 20.01 | 10.95 | 9.25 | 5398 | 9863 | 11,675 |
C5 | 50 | 13.99 | 11.61 | 9.90 | 12,864 | 15,508 | 18,181 |
C6 | 50 | 19.52 | 10.43 | 8.13 | 9220 | 17,252 | 22,153 |
C5 vertical padded | 15 | 27.55 | 18.67 | 12.10 | 1959 | 2892 | 4462 |
C4 vertical padded | 15 | 25.69 | 17.17 | 12.75 | 2102 | 3145 | 4235 |
Mix: 50% C5 50% DL | 100 | 34.37 | 22.36 | 19.65 | 10,475 | 16,100 | 18,320 |
Letters and Combinations | No. Letters | No. Letters Cancelled | % Cancellation | ||
---|---|---|---|---|---|
Test 1 | Test 2 | Test 1 | Test 2 | ||
DL | 90 | 90 | 90 | 100 | 100 |
C4 | 30 | 30 | 30 | 100 | 100 |
C5 | 50 | 49 | 50 | 99.33 | 100 |
C6 | 50 | 50 | 50 | 100 | 100 |
C5 vertical padded | 15 | 15 | 15 | 100 | 100 |
C4 vertical padded | 15 | 15 | 15 | 100 | 100 |
Mix: 50% C5 50% DL | 100 | 100 | 100 | 100 | 100 |
Letters and Combinations | No. Letters | Time (s) | Capacity (Letters/Hour) |
---|---|---|---|
Test 1: Regular mail, mostly C5, 7 padded, and 8 thin envelopes | 15 | 12.80 | 4218 |
Test 2: C5 mixed, 50% padded and regular | 29 | 18.00 | 5800 |
Test 3: DL type with a mix of thicknesses | 37 | 28.90 | 4609 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diez-Jimenez, E.; Lopez-Pascual, D.; Fernandez-Munoz, M.; del-Olmo-Anguix, J.; Valiente-Blanco, I.; Manzano-Narro, O.; Villacastin-Sanchez, A.; Alarcos, B. Automatic Compact High-Speed Industrial Postal Canceling Machine. Machines 2025, 13, 455. https://doi.org/10.3390/machines13060455
Diez-Jimenez E, Lopez-Pascual D, Fernandez-Munoz M, del-Olmo-Anguix J, Valiente-Blanco I, Manzano-Narro O, Villacastin-Sanchez A, Alarcos B. Automatic Compact High-Speed Industrial Postal Canceling Machine. Machines. 2025; 13(6):455. https://doi.org/10.3390/machines13060455
Chicago/Turabian StyleDiez-Jimenez, Efren, Diego Lopez-Pascual, Miguel Fernandez-Munoz, Jesus del-Olmo-Anguix, Ignacio Valiente-Blanco, Oscar Manzano-Narro, Angel Villacastin-Sanchez, and Bernardo Alarcos. 2025. "Automatic Compact High-Speed Industrial Postal Canceling Machine" Machines 13, no. 6: 455. https://doi.org/10.3390/machines13060455
APA StyleDiez-Jimenez, E., Lopez-Pascual, D., Fernandez-Munoz, M., del-Olmo-Anguix, J., Valiente-Blanco, I., Manzano-Narro, O., Villacastin-Sanchez, A., & Alarcos, B. (2025). Automatic Compact High-Speed Industrial Postal Canceling Machine. Machines, 13(6), 455. https://doi.org/10.3390/machines13060455