You are currently on the new version of our website. Access the old version .
AxiomsAxioms
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

13 January 2026

The XLindley Survival Model Under Generalized Progressively Censored Data: Theory, Inference, and Applications

and
1
Faculty of Technology and Development, Zagazig University, Zagazig 44519, Egypt
2
Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
*
Author to whom correspondence should be addressed.
This article belongs to the Special Issue Recent Applications of Statistical and Mathematical Models

Abstract

This paper introduces a novel extension of the classical Lindley distribution, termed the X-Lindley model, obtained by a specific mixture of exponential and Lindley distributions, thereby substantially enriching the distributional flexibility. To enhance its inferential scope, a comprehensive reliability analysis is developed under a generalized progressive hybrid censoring scheme, which unifies and extends several traditional censoring mechanisms and allows practitioners to accommodate stringent experimental and cost constraints commonly encountered in reliability and life-testing studies. Within this unified censoring framework, likelihood-based estimation procedures for the model parameters and key reliability characteristics are derived. Fisher information is obtained, enabling the establishment of asymptotic properties of the frequentist estimators, including consistency and normality. A Bayesian inferential paradigm using Markov chain Monte Carlo techniques is proposed by assigning a conjugate gamma prior to the model parameter under the squared error loss, yielding point estimates, highest posterior density credible intervals, and posterior reliability summaries with enhanced interpretability. Extensive Monte Carlo simulations, conducted under a broad range of censoring configurations and assessed using four precision-based performance criteria, demonstrate the stability and efficiency of the proposed estimators. The results reveal low bias, reduced mean squared error, and shorter interval lengths for the XLindley parameter estimates, while maintaining accurate coverage probabilities. The practical relevance of the proposed methodology is further illustrated through two real-life data applications from engineering and physical sciences, where the XLindley model provides a markedly improved fit and more realistic reliability assessment. By integrating an innovative lifetime model with a highly flexible censoring strategy and a dual frequentist–Bayesian inferential framework, this study offers a substantive contribution to modern survival theory.

Article Metrics

Citations

Article Access Statistics

Article metric data becomes available approximately 24 hours after publication online.