A Two-Dimensional Nonlocal Fractional Parabolic Initial Boundary Value Problem
Abstract
:1. Introduction
2. Statement of the Problem
3. Preliminaries
4. Main Result for the Uniqueness and Continuous Dependence of the Solution
5. Solvability and Existence of the Solution
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sadarangani, K.; Abdullaev, O.K. A nonlocal problem with discontinuous matching condition for loaded mixed type equation involving the Caputo fractional derivative. Adv. Differ. Equ. 2016, 2016, 241. [Google Scholar] [CrossRef]
- Gerardo, H.; Wladimir, N. Initial, mixed-boundary value problem for anisotropic fractional degenerate parabolic equations. Commun. Math. Sci. 2022, 20, 1279–1304. [Google Scholar]
- Ahmad, B.; Nieto, J.J. Existence of Solutions for Nonlocal Boundary Value Problems of Higher-Order Nonlinear Fractional Differential Equations. Abstr. Appl. Anal. 2009, 2009, 494720. [Google Scholar] [CrossRef]
- Mesloub, S.; Aldosari, F. Well posedness for a singular two dimensional fractional initial boundary value problem with Bessel operator involving boundary integral conditions. AIMS Math. 2021, 6, 9786–9812. [Google Scholar] [CrossRef]
- Mesloub, S.; Gadain, H.E. A priori bounds of the solution of a one point IBVP for a singular fractional evolution equation. Adv. Differ. Equ. 2020, 2020, 584. [Google Scholar] [CrossRef]
- Alzabut, J.; Khuddush, M.; Salim, A.; Etemad, S.; Rezapour, S. Fractional Order Nonlocal Thermistor Boundary Value Problem on Time Scales. Qual. Theory Dyn. Syst. 2024, 23, 167. [Google Scholar] [CrossRef]
- Chandran, K.; Gopalan, K.; Zubair, S.T.; Abdeljawad, T. A fixed point approach to the solution of singular fractional differential equations with integral boundary conditions. Adv. Differ. Equ. 2021, 2021, 56. [Google Scholar] [CrossRef]
- Yan, D. Existence results of fractional differential equations with nonlocal double-integral boundary conditions. Results Phys. 2023, 20, 4437–4454. [Google Scholar] [CrossRef]
- Cabada, A.; Hamdi, Z. Nonlinear fractional differential equations with integral boundary value conditions. Appl. Math. Comput. 2014, 228, 251–257. [Google Scholar] [CrossRef]
- Benchohra, M.; Hamani, S.; Ntouyas, S.K. Boundary value problems for differential equations with fractional order and nonlocal conditions. Nonlinear Anal. Theory Methods Appl. 2009, 71, 2391–2396. [Google Scholar] [CrossRef]
- Cabada, A.; Wang, G. Positive solutions of nonlinear fractional differential equations with integral boundary value conditions. J. Math. Anal. Appl. 2012, 389, 403–411. [Google Scholar] [CrossRef]
- Alhazzani, E.; Mesloub, S.; Gadain, H.E. On the Solvability of a Singular Time Fractional Parabolic Equation with Non Classical Boundary Conditions. Fractal Fract. 2024, 8, 189. [Google Scholar] [CrossRef]
- Bashir, B.; Karthikeyan, P.; Buvaneswari, P.K. Fractional differential equations with coupled slit-strips type integral boundary conditions. AIMS Math. 2019, 4, 1596–1609. [Google Scholar]
- Liu, F.; Zhuang, P.; Burrage, K. Numerical methods and analysis for a class of fractional advection–dispersion models. Comput. Math. Appl. 2012, 64, 2990–3007. [Google Scholar] [CrossRef]
- Elia, M.D.; Du, Q.; Glusa, C.; Gunzburger, M.; Tian, X.; Zhou, Z. Numerical methods for nonlocal and fractional models. Acta Numer. 2020, 29, 1–124. [Google Scholar]
- Damor, R.S.; Kumar, S.; Shukla, A.K. Numerical Solution of Fractional Diffusion Equation Model for Freezing in Finite Media. Int. J. Eng. Math. 2013, 2013, 785609. [Google Scholar] [CrossRef]
- Zhu, X.Z.; Yuan, Z.B.; Liu, F.; Nie, Y.F. Differential quadrature method for space-fractional diffusion equations on 2D irregular domains. Numer Algor. 2018, 79, 853–877. [Google Scholar] [CrossRef]
- Kumar, S.; Baleanu, D. Numerical solution of two-dimensional time fractional cable equation with Mittag-Leffler kernel. Math. Meth. Appl. Sci. 2020, 43, 8348–8362. [Google Scholar] [CrossRef]
- Taneja, K.; Deswal, K.; Kumar, D.; Baleanu, D. Novel Numerical Approach for Time Fractional Equations with Nonlocal Condition. Numer. Algorithms 2024, 95, 1413–1433. [Google Scholar] [CrossRef]
- Mesloub, S.; Alhefthi, R.K. On a Singular Non local Fractional System Describing a Generalized Timoshenko System with Two Frictional Damping Terms. Fractal Fract. 2023, 7, 514. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K.; Tariboon, J.; Alsaedi, A. Caputo type fractional differential equations with nonlocal Riemann-Liouville and Erdlyi-Kober type integral boundary conditions. Filomat 2017, 31, 4515–4529. [Google Scholar] [CrossRef]
- Aljoudi, S.; Ahmad, B.; Alsaedi, A. Existence and Uniqueness Results for a Coupled System of Caputo-Hadamard Fractional Differential Equations with Nonlocal Hadamard Type Integral Boundary Conditions. Fractal Fract. 2020, 4, 13. [Google Scholar] [CrossRef]
- Cui, Z.; Zhou, Z. Existence of solutions for Caputo fractional delay differential equations with nonlocal and integral boundary conditions. Fixed Point Theory Algorithms Sci. Eng. 2023, 2023, 1. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Ladyzhenskaya, O.L. The Boundary Value Problems of Mathematical Physics; Springer: New York, NY, USA, 1985. [Google Scholar]
- Alikhanov, A.A. Priori estimates for solutions of boundary value problems for fractional order equations. Differ. Equ. 2010, 46, 660–666. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mesloub, S.; Alhazzani, E.; Gadain, H.E. A Two-Dimensional Nonlocal Fractional Parabolic Initial Boundary Value Problem. Axioms 2024, 13, 646. https://doi.org/10.3390/axioms13090646
Mesloub S, Alhazzani E, Gadain HE. A Two-Dimensional Nonlocal Fractional Parabolic Initial Boundary Value Problem. Axioms. 2024; 13(9):646. https://doi.org/10.3390/axioms13090646
Chicago/Turabian StyleMesloub, Said, Eman Alhazzani, and Hassan Eltayeb Gadain. 2024. "A Two-Dimensional Nonlocal Fractional Parabolic Initial Boundary Value Problem" Axioms 13, no. 9: 646. https://doi.org/10.3390/axioms13090646
APA StyleMesloub, S., Alhazzani, E., & Gadain, H. E. (2024). A Two-Dimensional Nonlocal Fractional Parabolic Initial Boundary Value Problem. Axioms, 13(9), 646. https://doi.org/10.3390/axioms13090646