A Note on Some Novel Laplace and Stieltjes Transforms Associated with the Relaxation Modulus of the Andrade Model
Abstract
:1. Introduction and Preliminaries
2. Inverse Laplace Transform for Rational-Valued
3. Inverse Laplace Transform for Real-Valued
4. Main Results and Particular Cases
4.1. Particular Cases
4.1.1. Laplace Transform
- 1.
- Consider and . Taking , , , and with in (40), we arrive at
- 2.
- Consider , and . Taking , , , and with in (40), we arrive at
- 3.
- Consider , , , and . Taking , , and in (40), we arrive at
- 4.
- Consider , and . Taking , , , and in (40), we arrive at
4.1.2. Stieltjes Transform
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Proof of the Equivalence of Formulas
References
- Davies, B. Integral Transforms and Their Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 41. [Google Scholar]
- Apelblat, A. Laplace Transforms and Their Applications; Mathematics Research Developments Series; Nova Science Publishers: Hauppauge, NY, USA, 2012. [Google Scholar]
- Schiff, J.L. The Laplace Transform: Theory and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series: Direct Laplace Transforms; CRC Press: Boca Raton, FL, USA, 1986; Volume 4. [Google Scholar]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series: Inverse Laplace Transforms; CRC Press: Boca Raton, FL, USA, 1986; Volume 5. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. Tables of Integral Transforms; McGraw-Hill: New York, NY, USA, 1954; Volume II. [Google Scholar]
- Shohat, J.; Tamarkin, J. The Problem of Moments; American Mathematical Society: Providence, RI, USA, 1943. [Google Scholar]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. NIST Handbook of Mathematical Functions; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Widder, D.V. The Stieltjes transform. Trans. Am. Math. Soc. 1938, 43, 7–60. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; World Scientific: Singapore, 2022. [Google Scholar]
- Mainardi, F.; Masina, E.; González-Santander, J.L. A note on the Lambert W function: Bernstein and Stieltjes properties for a creep model in Linear Viscoelasticity. Symmetry 2023, 15, 1654. [Google Scholar] [CrossRef]
- González-Santander, J.L.; Spada, G.; Mainardi, F.; Apelblat, A. Calculation of the relaxation modulus in the Andrade model by using the Laplace transform. Fractal Fract. 2024, 8, 439. [Google Scholar] [CrossRef]
- Cosorzi, A.; Mellini, D.; González-Santander, J.; Spada, G. On the Love numbers of an Andrade planet. Earth Space Sci. 2024, 11, e2024EA003779. [Google Scholar] [CrossRef]
- Oldham, K.B.; Myland, J.; Spanier, J. An Atlas of Functions: With Equator, the Atlas Function Calculator; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Haubold, H.J.; Mathai, A.M.; Saxena, R.K. Mittag-Leffler functions and their applications. J. Appl. Math. 2011, 2011, 298628. [Google Scholar] [CrossRef]
- Brown, J.W.; Churchill, R.V. Complex Variables and Applications; McGraw-Hill: New York, NY, USA, 2009. [Google Scholar]
- Mainardi, F. Why the Mittag-Leffler function can be considered the queen function of the fractional calculus? Entropy 2020, 22, 1359. [Google Scholar] [CrossRef] [PubMed]
- Podlubny, I. Fractional Differential Equations; Acedemic Press: Cambridge, MA, USA, 1998. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Santander, J.L.; Apelblat, A. A Note on Some Novel Laplace and Stieltjes Transforms Associated with the Relaxation Modulus of the Andrade Model. Axioms 2024, 13, 647. https://doi.org/10.3390/axioms13090647
González-Santander JL, Apelblat A. A Note on Some Novel Laplace and Stieltjes Transforms Associated with the Relaxation Modulus of the Andrade Model. Axioms. 2024; 13(9):647. https://doi.org/10.3390/axioms13090647
Chicago/Turabian StyleGonzález-Santander, Juan Luis, and Alexander Apelblat. 2024. "A Note on Some Novel Laplace and Stieltjes Transforms Associated with the Relaxation Modulus of the Andrade Model" Axioms 13, no. 9: 647. https://doi.org/10.3390/axioms13090647
APA StyleGonzález-Santander, J. L., & Apelblat, A. (2024). A Note on Some Novel Laplace and Stieltjes Transforms Associated with the Relaxation Modulus of the Andrade Model. Axioms, 13(9), 647. https://doi.org/10.3390/axioms13090647