Time Scale Transformation in Bivariate Pearson Diffusions: A Shift from Light to Heavy Tails
Abstract
1. Introduction
- Normal and Student distributions take values from the whole real line; gamma, inverse gamma, and Fisher–Snedecor from the interval ; and beta from a bounded subinterval of the set of real numbers;
- Normal, beta, and gamma distributions are light-tailed, while inverse gamma, Fisher–Snedecor, and Student distributions are heavy-tailed. Therefore, stochastic processes related to these distributions can be used as alternatives to light-tailed processes in various applications, e.g., in finance and epidemiology. For financial applications, we refer to the popular paper [12], dealing with option pricing problems, including both light-tailed and heavy-tailed Pearson diffusions as special cases. In epidemiology, the transmission coefficient, representing the rate at which susceptible individuals become infected upon contact with infectious individuals, is often described by mean-reverting OU processes [13,14]. In such applications, Student diffusion can serve as a logical alternative.
- Inverse gamma and Fisher–Snedecor diffusions are constructed by applying a time-change to a stationary CIR process, independent from the CIR used in defining the time-change rate (Section 4.3 and Section 4.4),
- Student diffusion is derived by applying a time-change to the stationary OU process, independent of the CIR used in the time-change rate (Section 4.5).
2. Pearson Diffusions
- constant —OU process with normal stationary distribution,
- linear —CIR process with gamma stationary distribution,
- quadratic with —Jacobi diffusion with beta stationary distribution,
- quadratic with and —Fisher–Snedecor or F-diffusion with F stationary distribution,
- quadratic with and —reciprocal or inverse gamma diffusion with IG stationary distribution,
- quadratic with and —Student diffusion with Student stationary distribution.
2.1. Pearson Diffusions in Heterogeneous Settings
2.2. Heavy-Tailed Pearson Diffusions
- Inverse gamma diffusion (IGDiff) [7]:
- Student diffusion (StDiff) [8]:
- according to [9] (Proposition 3.1), ,
- via direct calculation, it follows that:
3. Absolutely Continuous Stochastic Time-Change
4. Time-Changed Functionals of Light-Tailed Pearson Diffusions
- IGDiff and FDiff are obtained from the base CIR process via absolutely continuous time-change defined in terms of the reciprocal CIR process, independent from the base (Section 4.3 and Section 4.4, respectively),
- StDiff is obtained from the particularly parametrized OU process via absolutely continuous time-change defined in terms of the square root of a specific functional of a squared reciprocal CIR process, again independent from the base (Section 4.5).
4.1. Jacobi Diffusion
4.2. CIR Diffusion
- drift parameter: ,
- squared diffusion parameter: ,
- drift parameter: , where is the mean of the specified stationary distribution and is the parameter determining the speed of the mean-reversion,
- squared diffusion parameter: .
- diffusion is a unique ergodic Markovian weak solution of SDE (23) with invariant density ,
- infinitesimal parameters and are linear functions. They satisfy the Lipschitz and the linear growth conditions; therefore, is the strong solution of the SDE (23),
- if , then is strictly stationary with autocorrelation function
- in a strictly stationary regime, for all , i.e., it is an integrable process.
4.3. Inverse Gamma Diffusion
4.4. F-Diffusion
4.5. Student Diffusion
- , were is given by ,
- , were is given by .
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forman, J.; Sørensen, M. The Pearson diffusions: A class of statistically tractable diffusion processes. Scand. J. Stat. 2008, 35, 438–465. [Google Scholar] [CrossRef]
- Avram, F.; Leonenko, N.; Šuvak, N. On spectral analysis of heavy-tailed Kolmogorov-Pearson diffusions. Markov Process. Relat. Fields 2013, 19, 249–298. [Google Scholar]
- Uhlenbeck, G.; Ornstein, L. On the theory of the Brownian motion. Phys. Rev. 1930, 36, 823–841. [Google Scholar] [CrossRef]
- Cox, J.; Ingersoll, J.; Ross, S. A theory of the term structure of interest rates. Econometrica 1985, 53, 385–407. [Google Scholar] [CrossRef]
- Gouriéroux, C.; Renault, E.; Valéry, P. Diffusion processes with polynomial eigenfunctions. Ann. D’ÉConomie Stat. 2007, 115–130. [Google Scholar] [CrossRef]
- Wong, E. The construction of a class of stationary Markoff processes. Sixt. Symp. Appl. Math.-Stoch. Process. Math. Phys. Eng. 1964, 16, 264–276. [Google Scholar]
- Leonenko, N.; Šuvak, N. Statistical inference for reciprocal gamma diffusion process. J. Stat. Plan. Inference 2010, 140, 30–51. [Google Scholar] [CrossRef]
- Leonenko, N.; Šuvak, N. Statistical inference for Student diffusion process. Stoch. Anal. Appl. 2010, 28, 972–1002. [Google Scholar] [CrossRef]
- Avram, F.; Leonenko, N.; Šuvak, N. Spectral representation of transition density of Fisher-Snedecor diffusion. Stochastics 2013, 85, 346–369. [Google Scholar] [CrossRef]
- Kolmogorov, A. On analytical methods in probability theory. J. Theor. Probab. 1931, 104, 415–458. [Google Scholar]
- Pearson, K. Tables for Statisticians and Biometricians, Part I; Biometrics Laboratory, University College London: London, UK, 1914. [Google Scholar]
- Albanese, C.; Campolieti, G.; Carr, P.; Lipton, A. Black-Scholes goes hypergeometric. Risk 2001, 14, 99–103. [Google Scholar]
- Wang, W.; Cai, Y.; Ding, Z.; Gui, Z. A stochastic differential equation SIS epidemic model incorporating Ornstein–Uhlenbeck process. Phys. Stat. Mech. Its Appl. 2018, 509, 921–936. [Google Scholar] [CrossRef]
- Djordjević, J.; Jovanović, B. Dynamical analysis of a stochastic delayed epidemic model with Lévy jumps and regime switching. J. Frankl. Inst. 2023, 360, 1252–1283. [Google Scholar] [CrossRef]
- Black, F.; Scholes, M. The pricing of options and corporate liabilities. J. Political Econ. 1973, 81, 637–654. [Google Scholar] [CrossRef]
- Merton, R. Theory of rational option pricing. Bell J. Econ. Manag. Sci. 1973, 4, 141–183. [Google Scholar] [CrossRef]
- Campolieti, G.; Makarov, R. Solvable diffusion models with linear and mean-reverting nonlinear drifts. SIAM J. Financ. Math. 2017, 8, 146–170. [Google Scholar] [CrossRef]
- Linetsky, V. Lookback options and diffusion hitting times: A spectral expansion approach. Financ. Stochastics 2004, 8, 373–398. [Google Scholar] [CrossRef]
- Linetsky, V. The spectral decomposition of the option value. Int. J. Theor. Appl. Financ. 2004, 7, 337–384. [Google Scholar] [CrossRef]
- Linetsky, V. Pricing equity derivatives subject to bankruptcy. Math. Financ. 2006, 16, 255–282. [Google Scholar] [CrossRef]
- Mendoza-Arriaga, R.; Carr, P.; Linetsky, V. Time-changed Markov processes in unified credit-equity modeling. Math. Financ. 2010, 20, 527–569. [Google Scholar] [CrossRef]
- Cherstvy, A.; Metzler, R. Nonergodicity, fluctuations, and criticality in heterogeneous diffusion processes. Phys. Rev. E 2014, 90, 012134. [Google Scholar] [CrossRef] [PubMed]
- Klemm, A.; Metzler, R.; Kimmich, R. Diffusion on random-site percolation clusters: Theory and NMR microscopy experiments with model objects. Phys. Rev. E 2002, 65, 021112. [Google Scholar] [CrossRef] [PubMed]
- Goychuk, I. Viscoelastic subdiffusion: From anomalous to normal. Phys. Rev. E 2009, 80, 046125. [Google Scholar] [CrossRef] [PubMed]
- Mandelbrot, B.; Van Ness, J. Fractional Brownian motions, fractional noises and applications. SIAM Rev. 1968, 10, 422–437. [Google Scholar] [CrossRef]
- Lutz, E. Fractional Langevin equation. Phys. Rev. E 2001, 64, 051106. [Google Scholar] [CrossRef]
- Wei, M.; Guobin, L.; Binny, C.; Kou, S.; Sunney Xie, X. Observation of a power-law memory kernel for fluctuations within a single protein molecule. Phys. Rev. Lett. 2005, 94, 198302. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J. The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J. Phys. Math. Gen. 2004, 37, R161. [Google Scholar] [CrossRef]
- Cherstvy, A.; Chechkin, A.; Metzler, R. Anomalous diffusion and ergodicity breaking in heterogeneous diffusion processes. New J. Phys. 2013, 15, 083039. [Google Scholar] [CrossRef]
- Cherstvy, A.; Metzler, R. Population splitting, trapping and non-ergodicity in heterogeneous diffusion processes. Phys. Chem. Chem. Phys. 2013, 15, 20220–20235. [Google Scholar] [CrossRef]
- Cherstvy, A.; Metzler, R. Ergodicity breaking, ageing, and confinement in generalized diffusion processes with position and time dependent diffusivity. J. Stat. Mech. Theory Exp. 2015, P05010. [Google Scholar] [CrossRef]
- Cherstvy, A.; Safdari, H.; Metzler, R. Anomalous diffusion, nonergodicity, and ageing for exponentially and logarithmically time-dependent diffusivity: Striking differences for massive versus massless particles. J. Phys. D Appl. Phys. 2021, 54, 195401. [Google Scholar] [CrossRef]
- Cherstvy, A.; Vinod, D.; Aghion, E.; Sokolov, I.M.; Metzler, R. Scaled geometric Brownian motion features sub- or superexponential ensemble-averaged, but linear time-averaged mean-squared displacements. Phys. Rev. E 2021, 103, 062127. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Cherstvy, A.; Liu, X.; Metzler, R. Anomalous diffusion and nonergodicity for heterogeneous diffusion processes with fractional Gaussian noise. Phys. Rev. E 2020, 102, 012146. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Wei, W.; Metzler, R.; Cherstvy, A. Anomalous diffusion, nonergodicity, non-Gaussianity, and aging of fractional Brownian motion with nonlinear clocks. Phys. Rev. E 2023, 108, 034113. [Google Scholar] [CrossRef]
- Di Nunno, G. On stochastic control for time-changed Lévy dynamics. SeMA J. 2022, 79, 529–547. [Google Scholar] [CrossRef]
- Bochner, S. Diffusion equation and stochastic processes. Proc. Natl. Acad. Sci. USA 1949, 35, 368–370. [Google Scholar] [CrossRef]
- Doeblin, W. Sur L’equation de Kolmogoroff. In Comptes Rendus de L’Académie des Sciences—Series I—Mathematics, Sealed Envelope Filed on February 26, 1940, Opened on May 18, 2000; Elsevier Science: Amsterdam, The Netherlands, 2000; Volume 331, pp. 1059–1102. [Google Scholar]
- Yor, M.; Bru, B. Comments on the life and mathematical legacy of Wolfgang Doeblin. Financ. Stochastics 2002, 6, 3–47. [Google Scholar] [CrossRef]
- Itô, K. On Stochastic Differential Equations; Memoirs AMS 4, American Mathematical Society: Providence, RI, USA, 1951. [Google Scholar]
- Itô, K. On a formula concerning stochastic differentials. Nagoya Math. J. 1951, 3, 55–65. [Google Scholar] [CrossRef]
- Feller, W. Zur der stochastischen Prozesse (Existenz- und Eindeutigkeitssatze). Math. Ann. 1937, 113, 113–160. [Google Scholar] [CrossRef]
- Feller, W. An Introduction to Probability Theory and Its Applications; Wiley: Hoboken, NJ, USA, 1971; Volume 2. [Google Scholar]
- Clark, P. A subordinated stochastic process model with finite variance for speculative prices. Econometrica 1973, 41, 135–155. [Google Scholar] [CrossRef]
- Swishchuk, A. Change of Time Methods in Quantitative Finance; Springer Briefs in Mathematics; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Johnson, H.; Shanno, D. Option pricing when the variance is changing. J. Financ. Quant. Anal. 1987, 22, 143–151. [Google Scholar] [CrossRef]
- Barndorff-Nielsen, O.; Nicolato, E.; Shephard, N. Some recent developments in stochastic volatility modelling. Quant. Financ. 2002, 2, 11–23. [Google Scholar] [CrossRef]
- Carr, P.; Geman, H.; Madan, D.; Yor, M. Stochastic volatility for Lévy processes. Math. Financ. 2003, 13, 345–382. [Google Scholar] [CrossRef]
- Swishchuk, A. Modeling of variance and volatility swaps for financial markets with stochastic volatilities. WILMOTT Mag. 2004, 2, 64–72. [Google Scholar]
- Heston, S. A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 1993, 6, 327–343. [Google Scholar] [CrossRef]
- Swishchuk, A. Explicit Option Pricing Formula for a Mean-Reverting Asset in Energy Market. J. Numer. Appl. Math. 2008, 1, 216–233. [Google Scholar]
- Swishchuk, A. Lévy-based interest rate derivatives: Change of time method and PIDEs. Can. Appl. Math. Quarerly 2008, 16, 1322532. [Google Scholar] [CrossRef][Green Version]
- Swishchuk, A. Change of time method in mathematical finance. Can. Appl. Math. Q. 2007, 15, 299–336. [Google Scholar]
- Veraart, A.; Winkel, M. Time change. In Encyclopedia of Quantitative Finance; Cont, R., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Barndorff-Nielsen, O.; Shiryaev, A. Change of Time and Change of Measure; World Scientific: Singapore, 2010. [Google Scholar] [CrossRef]
- Øksendal, B. When Is a Stochastic Integral a Time-Change of a Diffusion? In Preprint Series—Matematisk Institutt; Universitetet i Oslo: Oslo, Norway, 1985; pp. 1–24. Available online: https://www.duo.uio.no/handle/10852/43766 (accessed on 27 October 2024).
- Øksendal, B. When is a stochastic integral a time change of a diffusion? J. Theor. Probab. 1990, 3, 207–226. [Google Scholar] [CrossRef]
- Øksendal, B. Stochastic Differential Equations: An Introduction with Applications; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Heidernaetsch, M. On the Diffusion in Inhomogeneous Systems. Ph.D. Thesis, TU Chemnitz, Chemnitz, Germany, 2015. Available online: https://core.ac.uk/reader/153229710 (accessed on 27 October 2024).
- Revuz, D.; Yor, M. Continuous Martingales and Brownian Motion; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Leonenko, N.; Salinger, v.; Sikorskii, A.; Šuvak, N.; Boivin, M. Multimodal diffusion model for increments of electroencephalogram data. Stoch. Environ. Res. Risk Assess. 2023, 37, 4695–4706. [Google Scholar] [CrossRef]
- Leonenko, N.; Meerschaert, M.; Sikorskii, A. Correlation structure of fractional Pearson diffusions. Comput. Math. Appl. 2013, 66, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Leonenko, N.; Papić, I.; Sikorskii, A.; Šuvak, N. Correlated continuous time random walks and fractional Pearson diffusions. Bernoulli 2018, 24, 3603–3627. [Google Scholar] [CrossRef]
- Leonenko, N.; Papić, I.; Sikorskii, A.; Šuvak, N. Approximation of heavy-tailed fractional Pearson diffusions in Skorokhod topology. J. Math. Anal. Appl. 2020, 486, 123934. [Google Scholar] [CrossRef]
- Leonenko, N.; Meerschaert, M.; Sikorskii, A. Fractional Pearson diffusions. J. Math. Anal. Appl. 2013, 403, 532–546. [Google Scholar] [CrossRef]
- Leonenko, N.; Papić, I.; Sikorskii, A.; Šuvak, N. Heavy-tailed fractional Pearson diffusions. Stoch. Process. Their Appl. 2017, 127, 3512–3535. [Google Scholar] [CrossRef]
- Helland, I. One-Dimensional Diffusion Processes and Their Boundaries. 1996. Available online: https://api.semanticscholar.org/CorpusID:51775822 (accessed on 27 October 2024).
- Abramowitz, M.; Stegun, I. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th ed.; National Bureau of Standards—Applied Mathematics Series; U.S. Government Printing Office: Washington, DC, USA, 1964; Volume 55. [Google Scholar]
- Bradley, R. Basic properties of strong mixing conditions. A survey and some open questions. Probab. Surv. 2005, 2, 107–144. [Google Scholar] [CrossRef]
- Avram, F.; Leonenko, N.; Šuvak, N. Parameter estimation for Fisher-Snedecor diffusion. Statistics 2011, 45, 27–42. [Google Scholar] [CrossRef]
- Genon-Catalot, V.; Jeantheau, T.; Laredo, C. Stochastic volatility models as hidden Markov models and statistical applications. Bernoulli 2000, 6, 1051–1079. [Google Scholar] [CrossRef]
- Abourashchi, N.; Veretennikov, A. On exponential mixing bounds and convergence rate for reciprocal gamma diffusion process. Math. Commun. 2009, 14, 331–339. [Google Scholar]
- Abourashchi, N.; Veretennikov, A. On exponential bounds for mixing and the rate of convergence for Student processes. Theory Probab. Math. Stat. 2010, 81, 1–13. [Google Scholar] [CrossRef]
- Kulik, A.; Leonenko, N. Ergodicity and mixing bounds for the Fisher–Snedecor diffusion. Bernoulli 2013, 19, 2294–2329. [Google Scholar] [CrossRef]
- Boltzmann, L. Über die Eigenschaften monocyclischer und anderer damit verwandter Systeme. J. Die Reine Und Angew. Math. 1885, 98, 68–94. [Google Scholar] [CrossRef]
- Birkhoff, G. Proof of the ergodic theorem. Proc. Natl. Acad. Sci. USA 1931, 17, 656–660. [Google Scholar] [CrossRef] [PubMed]
- Neumann, J. Proof of the quasi-ergodic hypothesis. Proc. Natl. Acad. Sci. USA 1932, 18, 70–82. [Google Scholar] [CrossRef]
- Kolmogorov, A. Foundations of the Theory of Probability; Chelsea Publishing Company: New York, NY, USA, 1950. [Google Scholar]
- Jeon, J.; Metzler, R. Inequivalence of time and ensemble averages in ergodic systems: Exponential versus power-law relaxation in confinement. Phys. Rev. E 2012, 85, 021147. [Google Scholar] [CrossRef]
- Kobayashi, K. Stochastic calculus for a time-changed semimartingale and the associated stochastic differential equations. J. Theor. Probab. 2011, 24, 789–820. [Google Scholar] [CrossRef]
- Gouriéroux, C.; Jasiak, J. Multivariate Jacobi process with application to smooth transitions. J. Econom. 2006, 131, 475–505. [Google Scholar] [CrossRef]
- Valery, P.; Gouriéroux, G. A quasi-likelihood approach based on eigenfunctions for a bounded-valued Jacobi process. Preprint 2011. [Google Scholar]
- Johnson, N.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions; Wiley Series in Probability and Statistics; Wiley-Interscience: Hoboken, NJ, USA, 1995. [Google Scholar]
- Bibby, B.; Skovgaard, I.; Sørensen, M. Diffusion-type models with given marginal distribution and autocorrelation function. Bernoulli 2005, 11, 191–220. [Google Scholar] [CrossRef]
- Zhang, M.; Zong, G. From transience to recurrence for Cox–Ingersoll–Ross model when b < 0. Mathematics 2023, 11, 4485. [Google Scholar] [CrossRef]
- Mendoza-Arriaga, R.; Linetsky, V. Time-changed CIR default intensities with two-sided mean-reverting jumps. Ann. Appl. Probab. 2014, 24, 811–856. [Google Scholar] [CrossRef]
- Bhattacharya, R.; Waymire, E. Continuous Parameter Markov Processes and Stochastic Differential Equations; Graduate Texts in Mathematics; Springer Nature: Cham, Switzerland, 2023. [Google Scholar]
- Karlin, S.; Taylor, H. A Second Course in Stochastic Processes; Academic Press: Cambridge, MA, USA, 1981. [Google Scholar] [CrossRef]
- Lefebvre, M. Exact solution to a first-passage problem for an Ornstein–Uhlenbeck process with jumps and its integral. Stat. Probab. Lett. 2024, 205, 109956. [Google Scholar] [CrossRef]
- Lefebvre, M. First-passage densities of a two-dimensional process. SIAM J. Appl. Math. 1989, 49, 1514–1523. [Google Scholar] [CrossRef]
- Lefebvre, M. First-passage times and optimal control of integrated jump-diffusion processes. Fractal Fract. 2023, 7, 152. [Google Scholar] [CrossRef]
- Metzler, A. The Laplace transform of hitting times of integrated geometric Brownian motion. J. Appl. Probab. 2013, 50, 295–299. [Google Scholar] [CrossRef]
- Lin, L.; Sornette, D. The inverse Cox-Ingersoll-Ross process for parsimonious financial price modeling. arXiv 2023, arXiv:2302.11423. [Google Scholar] [CrossRef]
- Gouriéroux, C.; Lu, Y. SIR model with stochastic transmission. SSRN Electron. J. 2020. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šuvak, N. Time Scale Transformation in Bivariate Pearson Diffusions: A Shift from Light to Heavy Tails. Axioms 2024, 13, 765. https://doi.org/10.3390/axioms13110765
Šuvak N. Time Scale Transformation in Bivariate Pearson Diffusions: A Shift from Light to Heavy Tails. Axioms. 2024; 13(11):765. https://doi.org/10.3390/axioms13110765
Chicago/Turabian StyleŠuvak, Nenad. 2024. "Time Scale Transformation in Bivariate Pearson Diffusions: A Shift from Light to Heavy Tails" Axioms 13, no. 11: 765. https://doi.org/10.3390/axioms13110765
APA StyleŠuvak, N. (2024). Time Scale Transformation in Bivariate Pearson Diffusions: A Shift from Light to Heavy Tails. Axioms, 13(11), 765. https://doi.org/10.3390/axioms13110765