Next Article in Journal
Modified Wild Horse Optimizer for Constrained System Reliability Optimization
Previous Article in Journal
Some New Bullen-Type Inequalities Obtained via Fractional Integral Operators
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Interval-Valued Topology on Soft Sets

by
Sadi Bayramov
1,†,
Çiğdem Gündüz Aras
2,† and
Ljubiša D. R. Kočinac
3,*
1
Department of Algebra and Geometry, Baku State University, Baku AZ 1148, Azerbaijan
2
Department of Mathematics, Kocaeli University, Kocaeli 41380, Turkey
3
Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Axioms 2023, 12(7), 692; https://doi.org/10.3390/axioms12070692
Submission received: 12 June 2023 / Revised: 12 July 2023 / Accepted: 13 July 2023 / Published: 16 July 2023

Abstract

:
In this paper, we study the concept of interval-valued fuzzy set on the family SS X , E of all soft sets over X with the set of parameters E and examine its basic properties. Later, we define the concept of interval-valued fuzzy topology (cotopology) τ on SS X , E . We obtain that each interval-valued fuzzy topology is a descending family of soft topologies. In addition, we study some topological structures such as interval-valued fuzzy neighborhood system of a soft point, base and subbase of τ and investigate some relationships among them. Finally, we give some concepts such as direct sum, open mapping and continuous mapping and consider connections between them. A few examples support the presented results.

1. Introduction

The concept of interval-valued fuzzy set was given by Zadeh [1]. This set is an extension of fuzzy sets in the sense that the values of the membership degrees are intervals of numbers instead of the numbers. Chang [2] introduced the concept of fuzzy topology in 1968. But, since the concept of openness of a fuzzy set was not given, Samanta et al. [3,4] introduced the concept of gradation of openness (closedness) of a fuzzy set in 1992. Furthermore, the concept of intuitionistic gradation of openness of fuzzy sets in Sostak’s sense [5] was defined by some researchers [6,7,8]. In [9], D. L. Shi et al. introduced the concept of ordinary interval-valued fuzzifying topology and investigated some of its important properties. It is known that to describe and deal with uncertainties, a lot of mathematical approaches put forward a proposal such as probability theory, fuzzy set theory, rough set theory, interval set theory etc. But all these theories have inherent difficulties. In [10], Molodtsov presented soft set theory in order to overcome difficulties affecting the existing methods. Later, many papers were written on soft set theory. Since soft set theory has many application areas, it has progressed very quickly until today. Maji et al. [11] defined some operations on soft sets. In recent years, topological structures of soft sets have been studied by some authors. M. Shabir and M. Naz [12] have initiated the concept of soft topological space. A large number of papers was devoted to the study of soft topological spaces from various aspects [13,14,15,16,17,18,19,20,21,22]. Moreover, C.G. Aras et al. [23] gave the definition of gradation of openness τ which is a mapping from SS X , E to 0 , 1 which satisfies some conditions and showed that a fuzzy topological space gives a parameterized family of soft topologies on X . Also, S. Bayramov et al. [24] gave the concepts of continuous mapping, open mapping and closed mapping by using soft points in intuitionistic fuzzy topological spaces.
The importance and applications of interval-valued analysis is given in the book [25]. Our aim in this paper is to demonstrate applications of interval-valued mathematics in the context of fuzzy and soft topologies. We study the concept of interval-valued fuzzy set on the family SS X , E of all soft sets over X and examine its basic properties. We also define the concept of interval-valued fuzzy topology τ (called also cotopology) on SS X , E . We prove that each interval-valued fuzzy topology is actually a descending family of soft topologies. Further, we study some topological structures such as interval-valued fuzzy neighborhood system of a soft point, base and subbase of τ and investigate some relationships among them. Finally, we give some concepts such as direct sum, open mappings and continuous mappings and consider connections between them.

2. Preliminaries

In this section we give basic notions about soft sets and soft topology which will be used in the sequel.
Definition 1 
([10]). Let X be a set, called an initial universal set, and E a nonempty set, called the set of parameters. A pair F , E is called a soft set over X, where F : E P X is a mapping from E into a power set of X.
The family of all soft sets over X with the set of parameters E is denoted by SS X , E .
Definition 2 
([11]). If for all e E ,   F ( e ) = , F , E is said to be the null soft set denoted by Φ . If for all e E ,   F ( e ) = X , then F , E is said to be the absolute soft set denoted by X ˜ .
Definition 3 
([14,16]). Let F , E be a soft set over X. The soft set F , E is called a soft point if for some element e E ,   F ( e ) = { x } and F ( e ) = for all e E { e } b r i e f l y d e n o t e d b y x e .
Note that since each soft set can be expressed as a union of soft points, to give the family of all soft sets on X it is sufficient to give only soft points on X.
Notice that in the literature there are other definitions of soft points, but we think that our approach gives an easier applications of these points.
Definition 4 
([14]). The soft point x e is said to belong to the soft set F , E , denoted by x e ˜ F , E , if x e e F e , i.e., x F e .
Definition 5 
([12]). A soft topology on a non-empty set X is a collection τ of soft sets over X with a set of parameters E satisfying the following axioms:
(ST1) 
X ˜ and Φ belong to τ;
(ST2) 
The soft intersection of finitely many members in τ belongs to τ;
(ST3) 
The soft union of any family of members in τ belongs to τ.
The triple ( X , τ , E ) is called a soft topological space. Members of τ are called soft open sets.
Notice that if ( X , τ , E ) is a soft topological space, then τ e = { F ( e ) : ( F , E ) τ } defines a topology on X, for each e E . This topology is called e-parametric topology [12].
Throughout this paper, I denotes the closed unit interval 0 , 1 , and I represents the set of all closed subintervals of I . The members of I are called interval numbers and are denoted by a ˜ , b ˜ , c ˜ , Here a ˜ I ,   a ˜ = a , a + and 0 a a + 1 . Especially, if a = a + , then we take a ˜ = a . Also, it is defined an order relation , on I as follows:
(1) a ˜ , b ˜ I   a ˜ b ˜   a b ,   a + b + ,
(2) a ˜ , b ˜ I   a ˜ = b ˜   a ˜ b ˜ and b ˜ a ˜ ,   i . e . , a = b , a + = b + ,
(3) For any a ˜ , b ˜ I , maximum and minimum of a ˜ , b ˜ , respectively
a ˜ b ˜ = a b , a + b + , a ˜ b ˜ = a b , a + b + .
Let a ˜ i i J I . Then inf and sup of a ˜ i i J are defined as follows:
i J a ˜ i = i J a j , i J a j + , i J a ˜ i = i J a j , i J a j + .
Also, for each a ˜ I , the complement of a ˜ , denoted by a ˜ c , is defined as:
a ˜ c = 1 a + , 1 a .

3. Introduction to Interval-Valued Topology on Soft Sets

We introduce now the main notion in this paper, the notion of interval-valued fuzzy topology on the set SS X , E .
Definition 6. 
A mapping A : SS X , E I is called an interval-valued fuzzy set in SS X , E and is denoted briefly as I V F S .
Let I SS X , E represent the set of all I V F S s in SS X , E . For each A I SS X , E and F , E SS X , E . A F , E = A F , E , A + F , E is a closed interval. Thus A , A + : SS X , E I are two fuzzy sets. For each A I SS X , E , we write A = A , A + . In particular, 0 ˜ , 1 ˜ denote the interval-valued fuzzy empty set and the interval-valued fuzzy whole set in SS X , E , respectively.
Now we give the relations ⊂ and = on I SS X , E as follows:
A , B I SS X , E A B F , E SS X , E A F , E B F , E ,
A , B I SS X , E A = B F , E SS X , E A F , E = B F , E .
Definition 7. 
Let A I SS X , E and A i i J be arbitrary subfamily of I SS X , E . The complement, union and intersection of A are denoted by A c , i J A i and i J A i , respectively, are defined for each F , E SS X , E as follows respectively,
A c F , E = 1 A + F , E , 1 A F , E , i J A i F , E = i J A i F , E , i J A i F , E = i J A i F , E .
Proposition 1. 
Let A , B , C I SS X , E and A i i J I SS X , E . Then the following statements hold:
( 1 )   0 ˜ A 1 ˜ ,
( 2 )   A B = B A ,   A B = B A ,
( 3 )   A B C = A B C ,   A B C = A B C ,
( 4 )   A , B A B ,   A B A , B ,
( 5 )   A i J A i = i J A A i ,   A i J A i = i J A A i ,
( 6 )   0 ˜ c = 1 ˜ ,   1 ˜ c = 0 ˜ ,
( 7 )   A c c = A ,
( 8 )   i J A i c = i J A i c ,   i J A i c = i J A i c .
Proof. 
It is immediately obtained. □
Definition 8. 
A mapping τ = τ , τ + : SS X , E I is called an interval-valued fuzzy topology over SS X , E if it satisfies the following conditions:
(1) τ Φ = τ X ˜ = 1 ,
(2) τ F , E G , E τ F , E τ G , E ,   F , E , G , E SS X , E ,
(3) τ i J F i , E i J τ F i , E ,   F i , E i J SS X , E .
The interval-valued fuzzy topology is denoted briefly I V F T and the triple X , τ , E is called an interval-valued fuzzy topological space over SS X , E in short I V F T S
It is clear that τ   I V F T consists of two fuzzy topologies over SS X , E ,   τ and τ + . Also, for each F , E SS X , E ,   τ F , E τ + F , E .
Example 1. 
Let X = x , y , z and E = e . The set of all soft points on X is x e , y e , z e . Then the soft sets are:
F 1 e = x , F 2 e = y , F 3 e = z , F 4 e = x , y ,
F 5 e = x , z , F 6 e y , z , F 7 e = , F 8 e = X .
Define the mapping τ : SS X , E I as follows:
τ Φ = τ X ˜ = 1 , τ F 1 = 0.2 , 0.5 , τ F 2 = 0.3 , 0.4 , τ F 3 = 0.4 , 0.5 , τ F 4 = 0.2 , 0.4 , τ F 5 = 0.3 , 0.5 , τ F 6 = 0.3 , 0.5 .
Then it is clear that τ is an I V F T .
Example 2. 
Let X = x and E = a , b , c . The set of all soft points on X is x a , x b , x c . Then the soft sets are
F 1 a = x , F 1 b = , F 1 c = , F 2 a = , F 2 b = x , F 2 c = , F 3 a = , F 3 b = , F 3 c = x , F 4 a = x , F 4 b = x , F 4 c = , F 5 a = x , F 5 b = , F 5 c = x , F 6 a = , F 6 b = x , F 6 c = x , F 7 = Φ , F 8 = X ˜ .
We define the mapping τ : SS X , E I as follows:
τ Φ = τ X ˜ = 1 , τ F 1 = 0.3 , 0.5 , τ F 2 = 0.2 , 0.4 , τ F 3 = 0.3 , 0.6 , τ F 4 = 0.2 , 0.5 , τ F 5 = 0.4 , 0.5 , τ F 6 = 0.2 , 0.4 .
Then it is clear that τ is an I V F T .
Definition 9. 
A mapping C = μ C , υ C : SS X , E I is called an interval-valued fuzzy cotopology (in short I V F C T ) over SS X , E if it satisfies the following conditions:
(1) C Φ = C X ˜ = 1 ,
(2) C F , E G , E C F , E C G , E ,   F , E , G , E SS X , E ,
(3) C i J F i , E i J C F i , E ,   F i , E i J SS X , E .
The triple X , C , E is called an interval-valued fuzzy cotopological space over SS X , E and denoted by IVFCTS.
Proposition 2. 
( 1 ) If τ : SS X , E I is an I V F T , then C F , E = τ F , E c is a I V F C T ,   F , E SS X , E .
( 2 ) If C : SS X , E I is an I V F C T , then τ F , E = C F , E c is an I V F T ,   F , E SS X , E .
Proof. 
(1) It is clear that
C Φ = τ Φ c = τ X ˜ = 1 ,
C X ˜ = τ X ˜ c = τ Φ = 1 .
C F , E G , E = τ F , E G , E c = τ F , E c G , E c τ F , E c τ G , E c = C F , E C G , E .
C i J F i , E = τ i J F i , E c = τ i J F i , E c i J τ F i , E c = i J C F i , E .
(2) The proof is done similarly to (1). □
Definition 10. 
Let X , τ , E be an I V F T S and a ˜ I . We define two families τ a ˜ and τ a ˜ * as follows, respectively:
(1) τ a ˜ = F , E SS X , E : τ F , E a ˜ ,
(2) τ a ˜ * = F , E SS X , E : τ F , E > a ˜ .
Proposition 3. 
Let X , τ , E be an I V F T S and a ˜ , b ˜ I . Then:
( 1 )   τ a ˜ is a soft topology.
( 2 ) If a ˜ b ˜ , then τ b ˜ τ a ˜ .
( 3 )   τ a ˜ = b ˜ < a ˜ τ b ˜ , where a ˜ 0 .
( 4 )   τ a ˜ * is a soft topology.
( 5 ) If a ˜ b ˜ , then τ b ˜ * τ a ˜ * .
( 6 )   τ a ˜ * . = a ˜ < b ˜ τ b ˜ * , where a ˜ 1 .
Thus each interval-valued fuzzy topology is a descending family of soft topologies.
Proof. 
The proofs of (1), (2), (4) and (5) are clear.
(3) From (2), τ a ˜ a ˜ 0 is a descending family of soft topologies. Then for each a ˜ 0 ,   SS X , E
τ a ˜ b ˜ < a ˜ τ b ˜ . ( i )
Suppose that F , E τ a ˜ . Then τ F , E < a ˜ . Hence there exists b ˜ 0 such that τ F , E < b ˜ < a ˜ . So F , E τ b ˜ for b ˜ < a ˜ . Thus F , E b ˜ < a ˜ τ b ˜ is obtained, i.e.,
b ˜ < a ˜ τ b ˜ τ a ˜ . ( ii )
Hence from (i) and (ii), τ a ˜ = b ˜ < a ˜ τ b ˜ , where a ˜ 0 .
(6) The proof is obtained similarly to the proof of (3). □
Remark 1. 
It is clear that for each τ I V F T ,   τ a ˜ a ˜ I is a descending family of soft topologies.
Proposition 4. 
Let τ a ˜ a ˜ I be a descending family of soft topologies on X . We define the mapping τ : SS X , E I as follows: for each F , E S SS X , E ,
τ F , E = F , E τ a ˜ a ˜ .
Then τ I V F T .
Proof. 
Obviously τ Φ = τ X ˜ = 1 is met.
Suppose F , E , G , E SS X , E such that τ F , E = a ˜ and τ G , E = b ˜ . If a ˜ = 0 or b ˜ = 0 , then
τ F , E G , E τ F , E τ G , E , τ + F , E G , E τ + F , E τ + G , E .
Thus τ F , E G , E τ F , E τ G , E . Since
τ F , E = F , E τ a ˜ a ˜ = F , E τ a ˜ a , a + ,
we can find ε > 0 ,   c 1 ˜ and c 2 ˜ such that
a ε < c 1 a , a + ε < c 1 + a + , b ε < c 2 b , b + ε < c 2 + b +
and F , E τ τ c 1 , G , E τ τ c 2 . Let
c = c 1 c 2 , c + = c 1 + c 2 + , d = a b , d + = a + b + .
Then c ˜ a ˜ ,   c ˜ b ˜ . Since τ a ˜ a ˜ I is a descending family, then τ a ˜ , τ b ˜ τ c ˜ . Since F , E τ a ˜ ,   G , E τ b ˜ , then F , E G , E τ c ˜ . So we have
τ F , E G , E c > d ε , τ + F , E G , E d + > d + ε .
Since ε > 0 was arbitrary,
τ F , E G , E c d = a b , τ + F , E G , E d + = a + b + .
Hence τ F , E G , E τ F , E τ G , E is obtained.
Finally, let F i , E i J SS X , E and τ F i , E = a i ˜ ,   a ˜ = i J a ˜ i . If a ˜ = 0 , then obviously
τ i J F i , E 0 = i J τ F i , E .
If a ˜ >   0 , choose ε > 0 such that a ˜ > ε . Then for i J ,   0 < a ε < a i and 0 < a + ε < a i + . Thus F i , E τ a ε , a + ε . So i J F i , E τ a ε , a + ε and τ i J F i , E a ε ,   τ + i J F i , E a + ε . Since ε > 0 was arbitrary,
τ i J F i , E a = i J τ F i , E , τ + i J F i , E a + = i J τ + F i , E .
Hence τ i J F i , E i J τ F i , E is met. □
Theorem 1. 
Let X , τ , E be an I V F T S and let Y X . We define the mapping τ Y : SS Y , E I as follows: for each F , E SS Y , E ,
τ Y F , E = G , E SS X , E F , E = G , E Y ˜ τ G , E .
Then X , τ , E I V F T and τ Y F , E τ F , E for each F , E SS Y , E . Then Y , τ Y , E is said to be an interval-valued fuzzy subspace of ( X , τ , E ) , and τ Y is said to be induced interval-valued fuzzy topology on Y by τ .
Proof. 
It is obvious that τ Y Φ = τ Y Y ˜ = 1 . Let F , E , G , E SS Y , E . Then
τ Y F , E τ Y G , E = C 1 , E SS X , E F , E = C 1 , E Y ˜ τ C 1 , E C 2 , E SS X , E G , E = C 2 , E Y ˜ τ C 2 , E = C 1 , E , C 2 , E SS X , E F , E G , E = C 1 , E C 2 , E Y ˜ τ C 1 , E τ C 2 , E C 1 , E , C 2 , E SS X , E F , E G , E = C 1 , E C 2 , E Y ˜ τ C 1 , E C 2 , E = τ Y F , E G , E .
Now, let F i , E i J SS Y , E . Then
τ Y i J F i , E = B i , E SS X , E i J F i , E = i J B i , E Y ˜ τ i J B i , E B i , E SS X , E i J F i , E = i J B i , E Y ˜ i J τ B i , E = i J B i , E SS X , E i J F i , E = i J B i , E Y ˜ τ B i , E = i J τ Y F i , E .
Also, for each F , E SS Y , E ,   τ Y F , E τ F , E is satisfied. □

4. Interval-Valued Neighborhood Structures

In this section we define and study the concept of interval-valued fuzzy neighborhood system of a soft point.
Definition 11. 
Let X , τ , E be an I V F T S and let x e be a soft point. Then a mapping N x e : SS X , E I is called the interval-valued fuzzy neighborhood system of x e if for each F , E SS X , E ,
N x e = x e G , E F , E τ G , E .
Proposition 5. 
Let X , τ , E be an I V F T S and let F , E SS X , E . Then
x e F , E x e G , E F , E τ G , E = τ F , E .
Proof. 
Since F , E = x e F , E x e , it is clear that
x e F , E x e G , E F , E τ G , E τ F , E .
Let G x e = G , E SS X , E : x e G , E F , E . If f x e F , E G x e , then obviously x e F , E f x e = F , E . Then
x e F , E τ f x e τ x e F , E f x e = τ F , E .
So
x e F , E x e G , E F , E τ G , E = f x e F , E G x e x e F , E τ f x e τ F , E .
Hence
x e F , E x e G , E F , E τ G , E = τ F , E .
Definition 12. 
Let X , τ , E be an I V F T S .
(1) β : SS X , E I is called a base of τ if β satisfies the following condition: F , E SS X , E
τ F , E = i J G i , E = F , E i J β G i , E .
(2) φ : SS X , E I is called a subbase of τ if φ ˜ : SS X , E I is a base of τ , where
φ ˜ F , E = i J G i , E = F , E i J φ G i , E
and J is a finite set.
We now give an example of a base for a topology.
Example 3. 
Let X = { x } , E = { e 1 , e 2 , e 3 } . The set of soft points in X is { x e 1 , x e 2 , x e 3 } . Let a ˜ [ I ] be fixed. We define the mapping τ : SS ( X , E ) [ I ] as follows: for ( F , E ) SS ( X , E ) we set
τ ( F , E ) = 1 , i f ( F , E ) { Φ , X ˜ , { x e 2 } , { x e 1 , x e 2 } , { x e 2 , x e 3 } } , a ˜ , o t h e r w i s e .
The mapping β : SS ( X , E ) [ I ] defined by
β ( F , E ) = 1 , i f ( F , E ) { { x e 2 } , { x e 1 , x e 2 } , { x e 2 , x e 3 } }
is a base for τ.
Theorem 2. 
Let X , τ , E be an I V F T S and let β : SS X , E I be a mapping such that β τ . Then β is an interval-valued fuzzy base for τ if and only if for each soft point x e and each F , E SS X , E ,
N x e F , E x e G , E F , E β G , E .
Proof. 
Let β be an interval-valued fuzzy base for τ , x e be a soft point and F , E SS X , E , x e F , E . Thus from the definition of interval-valued fuzzy neighborhood system of x e ,
N x e F , E = x e G , E F , E τ G , E = x e G , E F , E i J G i , E = G , E i J β G i , E .
If x e G , E = i J G i , E , then there is i 0 J such that x e G i 0 , E . Hence
i J β G i , E β G i 0 , E x e G , E F , E β G , E .
So
N x e F , E x e G , E F , E β G , E
is obtained.
Conversely, suppose the condition of necessary holds and for F , E SS X , E ,
F , E = i J G i , E .
Then
τ F , E i J τ G i , E i J β G i , E .
Hence
τ F , E i J G i , E = F , E i J β G i , E ( i )
On the other hand, from Proposition 5,
τ F , E = x e F , E x e G , E F , E τ G , E = x e F , E N x e F , E x e F , E x e G , E F , E β G , E = f x e F , E G x e x e F , E β f x e .
So, for each f x e F , E G x e , since F , E = x e F , E f x e ,
f x e F , E G x e x e F , E β f x e = i J G i , E = F , E i J β G i , E .
Therefore
τ F , E i J G i , E = F , E i J β G i , E . ( ii )
Hence from (i) and (ii),
τ F , E = i J G i , E = F , E i J β G i , E ,
i.e., β is an interval-valued fuzzy base for τ .
Theorem 3. 
If β : SS X , E I satisfies the following conditions:
(1) β Φ = β X ˜ = 1 ,
(2) β F , E G , E β F , E β G , E ,   F , E , G , E SS X , E , then
τ β F , E = i J G i , E = F , E i J β G i , E
is an interval-valued fuzzy topology and β is a base of τ β .
Proof. 
From the condition (1), τ β Φ = τ β X ˜ = 1 hold. For F , E , G , E SS X , E ,
τ β F , E τ β G , E = i J 1 F i , E = F , E i J β F i , E j J 2 G j , E = G , E j J β G j , E = i J 1 F i , E = F , E j J 2 G j , E = G , E i J 1 β F i , E j J 2 β G j , E i J 1 , j J 2 F i , E G j , E = F , E G , E i J 1 , j J 2 β F i , E G j , E k J 3 H k , E H k , E = F , E G , E k J 3 β H k , E = τ β F , E G , E .
is obtained. Let let F i , E i J SS X , E . We consider a family
B i = G l i , E : l i J i : l i J i G l i , E = F i , E .
Then
F , E = i J F i , E = i J l i K i G l i , E .
For an arbitrary f i J B i , since i J G l i , E f i G l i , E = i J F i , E ,
τ β F , E = l J G l , E = F , E l J β G l , E f i J B i i J G l i , E f i β G l i , E = i J G l i , E : l i J i l i J i β G l i , E = i J τ β F i , E
is obtained. Thus τ β is an interval-valued fuzzy topology. It is clear that β is a base of τ β .

5. Mappings

In this section we define and study continuous and open mappings between interval-valued fuzzy topological spaces.
Definition 13. 
Let X , τ , E and Y , ζ , E * be two I V F T S s and f , φ : X , τ , E Y , ζ , E * be a mapping. Then f , φ is called a continuous mapping at the soft point x e X , E if for each arbitrary soft set f , φ x e = f x φ e G , E * SS Y , E * , there exists F , E SS X , E such that
τ F , E ζ G , E * and f , φ F , E G , E * .
f , φ is called a continuous mapping if f , φ is a continuous mapping for each soft point.
The following example illustrates the definition of continuity.
Example 4. 
Let X = { x , y } , E = { e } . The set of all soft points in X is { x e , y e } , and the soft sets are
F 1 ( e ) = { x } , F 2 ( e ) = { y } , F 3 ( e ) = Φ , F 4 ( e ) = X ˜ .
Let Y = { u } , E = { e 1 , e 2 } . The soft sets in Y are:
G 1 ( e 1 ) = u , G 1 ( e 2 ) = Φ ,
G 2 ( e 1 ) = Φ , G 2 ( e 2 ) = u ,
G 3 ( e 1 ) = G 3 ( e 2 ) = Y ˜ ,
G 4 ( e 1 ) = G 4 ( e 2 ) = Φ .
Define τ : SS ( X , E ) [ I ] and τ : SS ( Y , E ) [ I ] by
τ ( F 1 , E ) = [ 0.1 , 0.6 ] , τ ( F 2 , E ) = [ 0.3 , 0.5 ] , τ ( F 3 , E ) = τ ( F 4 , E ) = 1 ;
τ ( G 1 , E ) = [ 0.2 , 0.7 ] , τ ( G 2 , E ) = [ 0.4 , 0.6 ] , τ ( G 3 , E ) = τ ( G 4 , E ) = 1 .
Consider mappings f : X Y and φ : E E defined by
f ( x ) = f ( y ) = u ,
φ ( e ) = e 1 .
Then ( f , φ ) : ( X , τ , E ) ( Y , τ , E ) is a continuous mapping. Indeed, we have
( f , φ ) 1 ( G 1 , E ) ( e ) = f 1 ( G 1 ( φ ( e ) ) ) = f 1 ( u ) = { x , y } ,
τ ( f , φ ) 1 ( G 1 , E ) = 1 τ ( G 1 , E ) ;
( f , φ ) 1 ( G 2 , E ) ( e ) = f 1 ( G 2 ( φ ( e ) ) ) = f 1 ( Φ ) = Φ ,
τ ( f , φ ) 1 ( G 2 , E ) = 1 τ ( G 2 , E ) .
Theorem 4. 
Let X , τ , E and Y , ζ , E * be two I V F T S s and f , φ : X , τ , E Y , ζ , E * be a mapping. Then f , φ is a continuous mapping if and only if
τ f , φ 1 G , E * ζ G , E *
is satisfied for each G , E * SS Y , E * .
Proof. 
Let f , φ be a continuous mapping and G , E * SS Y , E * . Suppose x e f , φ 1 G , E * be an arbitrary soft point. Since f , φ is a continuous mapping, there exists x e F , E SS X , E such that
τ F , E ζ G , E * and f , φ F , E G , E * .
Then
f , φ 1 G , E * = x e f , φ 1 G , E * x e x e f , φ 1 G , E * F , E f , φ 1 G , E * .
We have
τ f , φ 1 G , E * = τ x e f , φ 1 G , E * F , E τ F , E ζ G , E * .
Conversely, let x e SS X , E be an arbitrary soft point and f , φ x e G , E * . From the condition of the theorem, x e f , φ 1 G , E * ,
τ f , φ 1 G , E * ζ G , E * ,
and f , φ f , φ 1 G , E *   G , E * hold. So f , φ is a continuous mapping. □
Theorem 5. 
Let X , τ , E and Y , ζ , E * be two I V F T S s and f , φ : X , τ , E Y , ζ , E * be a mapping. Then f , φ is a continuous mapping if and only if for a ˜ = a , a + I ,
f a , φ a : X , τ a , E Y , ζ a , E * , f a + , φ a + : X , τ a + , E Y , ζ a + , E *
are soft continuous mappings.
Proof. 
Let f , φ be a continuous mapping and G , E * ζ a ˜ . Then ζ G , E * a ˜ . For each G , E * SS Y , E * ,   ζ G , E * a ,   ζ + G , E * a + . Since
τ f , φ 1 G , E * ζ G , E * a ˜ ,
then
τ f , φ 1 G , E * a , τ + f , φ 1 G , E * a + , f , φ 1 G , E * τ a , f , φ 1 G , E * τ a + .
Conversely, suppose that for a ˜ = a , a + I ,
f a , φ a : X , τ a , E Y , ζ a , E * , f a + , φ a + : X , τ a + , E Y , ζ a + , E *
are soft continuous mappings. If for each G , E * SS Y , E * ,   ζ G , E * = a ˜ , then G , E * ζ a ˜ , so G , E * ζ a and G , E * ζ a + . Since f a , φ a ,   f a + , φ a + are continuous mappings, f a , φ a 1 G , E * τ a , f a + , φ a + 1 G , E * τ a + . Then
τ f , φ 1 G , E * a ˜ = ζ G , E * ,
i.e., f , φ is a continuous mapping. □
Theorem 6. 
Let X , τ , E and Y , ζ , E * be two I V F T S s and β * be an interval-valued fuzzy base for ζ . Then f , φ : X , τ , E Y , ζ , E * is a continuous mapping if and only if β * G , E * τ f , φ 1 G , E * for each G , E * SS Y , E * .
Proof. 
Let f , φ : X , τ , E Y , ζ , E * be a continuous mapping and G , E * SS Y , E * . Then ζ G , E * β * G , E * . So,
τ f , φ 1 G , E * ζ G , E * β * G , E *
is obtained.
Conversely, let β * G , E * τ f , φ 1 G , E * for each G , E * SS Y , E * . Let G , E * = i J G j , E * . Hence
τ f , φ 1 G , E * = τ f , φ 1 i J G j , E * = τ i J f , φ 1 G j , E * i J τ f , φ 1 G j , E * β * i J G j , E * .
So we have τ f , φ 1 G , E * G , E * = i J G j , E * β * i J G j , E * = ζ G , E * . □
Theorem 7. 
Let X , τ , E and Y , ζ ζ , E * be two I V F T S s and δ * be a subbase for ζ . Then f , φ : X , τ , E Y , ζ , E * is a continuous mapping if δ * G , E * τ f , φ 1 G , E * is satisfied, for each G , E * SS Y , E * .
Proof. 
For each G , E * SS Y , E * ,
δ * G , E * = i J G i , E * = G , E * i J μ A F i , E * = G i , E * μ A ζ F μ , E * i J G i , E * = G , E * i J μ A F i , E * = G i , E * μ A τ f , φ 1 F μ , E * i J G i , E * = G , E * i J τ f , φ 1 G i , E * i J G i , E * = G , E * τ f , φ 1 i J G i , E * = τ f , φ 1 G , E *
is obtained. □
Definition 14. 
Let X , τ , E and Y , ζ , E * be two I V F T S s and f , φ : X , τ , E Y , ζ , E * be a mapping. Then f , φ is called an open mapping if it the following condition
τ F , E ζ f , φ F , E
is satisfied for each F , E SS X , E .
Now we give an example of an open mapping.
Example 5. 
Let X = { x } , E = { e 1 , e 2 } ; Y = { u , v } , E = { e } .
The soft sets in X are
F 1 ( e 1 ) = { x } , F 1 ( e 2 ) = Φ ,
F 2 ( e 1 ) = Φ , F 2 ( e 2 ) = { x } ,
F 3 ( e 1 ) = F 3 ( e 2 ) = { x } ,
F 4 ( e 1 ) = F 4 ( e 2 ) = Φ ,
and the soft sets in Y are
G 1 ( e ) = { u } , G 2 ( e ) = { v } , G 3 ( e ) = Y ˜ , G 4 ( e ) = Φ .
Define topologies τ on X and τ on Y by
τ ( F 1 , E ) = [ 0.2 , 0.5 ] , τ ( F 2 , E ) = [ 0.1 , 0.7 ] , τ ( F 3 , E ) = τ ( F 4 , E ) = 1 ;
τ ( G 1 , E ) = 1 , τ ( G 2 , E ) = [ 0.4 , 0.8 ] , τ ( G 3 , E ) = τ ( G 4 , E ) = 1 .
Consider mappings f : X Y and φ : E E given by
f ( x ) = u ,
φ ( e 1 ) = φ ( e 2 ) = e .
Then
( f , φ ) ( F 1 , E ) ( e ) = f ( F 1 ( e 1 ) ) f ( F 1 ( e 2 ) ) = f ( x ) = u = G 1 ( e ) ,
τ ( F 1 , E ) = [ 0.2 , 0.5 ] τ ( G 1 , e ) = [ 1 , 1 ] ;
( f , φ ) ( F 2 , E ) ( e ) = f ( F 2 ( e 1 ) ) f ( F 2 ( e 2 ) ) = f ( x ) = u = G 1 ( e ) ,
τ ( F 2 , E ) = [ 0.1 , 0.7 ] τ ( G 1 , e ) = [ 1 , 1 ] .
It follows that ( f , φ ) is an open mapping.
Theorem 8. 
Let X , τ , E and Y , ζ , E * be two I V F T S s and f , φ : X , τ , E Y , ζ , E * be a mapping and β be a base of τ . If
β F , E ζ f , φ F , E
is satisfied for each F , E SS X , E , then f , φ is an open mapping.
Proof. 
For each F , E SS X , E ,
τ F , E = τ F , E = i J F i , E = F , E i J β F i , E i J F i , E = F , E i J ζ f , φ F i , E i J F i , E = F , E ζ f , φ i J F i , E = ζ f , φ F , E
is satisfied. □
Theorem 9. 
Let Y , ζ , E * be an I V F T S and f , φ : SS X , E Y , ζ , E * be a mapping of soft sets. Then define τ : SS X , E I as follows:
τ F , E = ζ G , E * . f , φ 1 G , E * = F , E
Then τ is an interval-valued fuzzy topology over SS X , E and f , φ is a continuous mapping.
Proof. 
It is obvious that τ Φ = τ X ˜ = 1 .
τ F 1 , E F 2 , E = ζ G , E * : f , φ 1 G , E * = F 1 , E F 2 , E ζ G 1 , E * G 2 , E * : f , φ 1 G 1 , E * G 2 , E * = F 1 , E F 2 , E ζ G 1 , E * : f , φ 1 G 1 , E * = F 1 , E ζ G 2 , E * : f , φ 1 G 2 , E * = F 2 , E = τ F 1 , E τ F 2 , E
is obtained. Also,
τ i J F i , E = ζ G , E * : f , φ 1 G , E * = i J F i , E ζ i J G i , E * : f , φ 1 i J G i , E * = i J F i , E i J ζ G i , E * : f , φ 1 G i , E * = F i , E = i J ζ G i , E * : f , φ 1 G i , E * = F i , E = i J τ F i , E .
So τ is an interval-valued fuzzy topology over SS X , E and f , φ is a continuous mapping. □
Theorem 10. 
Let X , τ , E be an I V F T S and f , φ : X , τ , E SS Y , E * be a mapping of soft sets. Then define ζ : SS Y , E * I as follows:
ζ G , E * = τ f , φ 1 G i , E * .
Then ζ is an interval-valued fuzzy topology over SS Y , E * and f , φ is a continuous mapping.
Proof. 
It is clear that ζ Φ = ζ Y ˜ = 1 .
ζ G 1 , E * G 2 , E * = τ f , φ 1 G 1 , E * G 2 , E * = τ f , φ 1 G 1 , E * f , φ 1 G 2 , E * τ f , φ 1 G 1 , E * τ f , φ 1 G 2 , E * = ζ G 1 , E * ζ G 2 , E *
is obtained. Furthermore,
ζ i J G i , E * = τ f , φ 1 i J G i , E * = τ i J f , φ 1 G i , E * i J τ f , φ 1 G i , E * = i J ζ G i , E * .
So ζ is an interval-valued fuzzy topology over SS Y , E * and f , φ is a continuous mapping. □

6. Direct Sum

Now let X λ , τ λ , E λ λ Λ be a family of fuzzy topological spaces, X λ X ν = and E λ E ν = for λ ν . Let X ˜ be union of all soft points which belong to this space and E = λ Λ E λ . Then X ˜ , E is the family of soft sets on X = λ Λ X λ with parameters E . For soft point x e X ˜ , E if x X λ , then e E λ . If e E λ , then x X λ is satisfied. For an arbitrary F , E X ˜ , E ,   F , E λ = F e X λ λ Λ [23].
Theorem 11. 
Let X λ , τ λ , E λ λ Λ be a family of interval-valued fuzzy topological spaces, X λ s be pairwise disjoint. Then τ defined by
τ F , E = λ Λ τ λ F , E λ ,
for each F , E X ˜ , E is an interval-valued fuzzy topology on X ˜ , E .
Proof. 
Let F 1 , E , F 2 , E X ˜ , E . Then
τ F 1 , E F 2 , E = λ Λ τ λ F 1 , E F 2 , E λ = λ Λ τ λ F 1 , E λ F 2 , E λ λ Λ τ λ F 1 , E λ τ λ F 2 , E λ = λ Λ τ λ F 1 , E λ λ Λ τ λ F 2 , E λ = τ F 1 , E τ F 2 , E
holds.
Now, let F i , E i i J be a family of soft sets. Then
τ i J F i , E i = λ Λ τ λ i J F i , E i λ = λ Λ τ λ i J F i , E i λ λ Λ i J τ λ F i , E i λ = i J λ Λ τ λ F i , E i λ = i J τ F i , E i
is satisfied. Hence, X , τ , E is an I V F T S .
Definition 15. 
The interval-valued fuzzy topological space X , τ , E in the previous theorem is called the direct sum of X λ , τ λ , E λ λ Λ , denoted by X , τ , E = λ Λ X λ , τ λ , E λ .
It is obvious that i λ : X λ X = λ Λ X λ and j λ : E λ E = λ Λ E λ are embedding mappings for all λ Λ . Then
i λ , j λ : X λ , τ λ , E λ X , τ , E
is a continuous mapping.
Theorem 12. 
Let X λ , τ λ , E λ λ Λ be a family of interval-valued fuzzy topological spaces, X = λ Λ X λ be a set, E = λ Λ E λ be a parameter set and p λ : X X λ ,   q λ : E E λ be two projections mappings for λ Λ . Define β : SS Y , E I as follows:
β G , E * = j = 1 n τ α i F α i , E α i : F , E = j = 1 n p α i , q α i 1 F α i , E α i .
Then β is a base of the topology τ β R on ( X , E ) , and p λ , q λ : X , τ β , E X λ , τ λ , E λ are continuous mapping for λ Λ .
Proof. 
We show that β is a base. Indeed,
β X ˜ = j = 1 n τ α i F α i , E α i : X ˜ = j = 1 n p α i , q α i 1 F α i , E α i = j = 1 n τ α i X α i , E α i = 1
is satisfied. Similarly, β Φ is obtained.
β F , E β G , E = F , E = j = 1 n p α i , q α i 1 F α i , E α i j = 1 n τ α i F α i , E α i G , E = j = 1 k p δ i , q δ i 1 G δ i , E δ i j = 1 k τ δ i G δ i , E δ i = F , E = j = 1 n p α i , q α i 1 F α i , E α i G , E = j = 1 k p δ i , q δ i 1 G δ i , E δ i j = 1 n τ α i F α i , E α i j = 1 k τ δ i G δ i , E δ i = j = 1 n p α i , q α i 1 F α i , E α i j = 1 k p δ i , q δ i 1 G δ i , E δ i = F , E G , E j = 1 n τ α i F α i , E α i j = 1 k τ δ i G δ i , E δ i λ Λ p ϖ λ , q ϖ λ 1 H ϖ λ , E ϖ λ = F , E G , E τ ϖ λ H ϖ λ , E ϖ λ = β F , E G , E .
Hence β is a base.
Now we check that the projection mapping p λ , q λ : X , τ β , E X λ , τ λ , E λ are continuous mapping for λ Λ . Indeed, for each F λ , E λ SS X λ , E λ ,
τ p λ , q λ 1 F λ , E λ β p λ , q λ 1 F λ , E λ = j = 1 n τ α i F α i , E α i : p α i , q α i 1 F α i , E α i = p λ , q λ 1 F λ , E λ τ λ F λ , E λ
is satisfied. □
Remark 2. 
In general, we cannot obtain an interval-valued fuzzy topology by utilizing τ and τ + , with τ and τ + being fuzzy topologies. If τ , τ + are two fuzzy topologies and F , E SS X , E , τ F , E τ + F , E , then τ = τ , τ + is an interval-valued fuzzy topology.

7. Conclusions

We introduce the interval-valued fuzzy set on the family of all soft sets over X . Later we give interval-valued fuzzy topology (cotopology) on SS X , E . We obtain that each interval-valued fuzzy topology is a descending family of soft topologies. In addition to, we study some topological structures such as interval-valued fuzzy neighborhood system of a soft point, base and subbase of τ and investigate some relationship between them. Finally, we give some concepts such as direct sum, open mapping and continuous mapping, consider relationships between them and illustrate it by examples.
The relations between soft topologies and crisp topologies explained in the paper [19,21] may be used for the future research in this field. Also, the relations between fuzzy soft and soft topologies might suggest a new lines of investigation related to our article.

Author Contributions

The authors contributed equally to this work. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Zadeh, L.A. The concept of a lingusistic variable and its application to approximate reasoning. Inf. Sci. 1975, 9, 199–249. [Google Scholar] [CrossRef]
  2. Chang, C.L. Fuzzy topological spaces. J. Math. Anal. Appl. 1968, 24, 182–190. [Google Scholar] [CrossRef] [Green Version]
  3. Chattopadhyay, K.C.; Hazra, R.N.; Samanta, S.K. Gradation of openness: Fuzzy topology. Fuzzy Sets Syst. 1992, 49, 237–242. [Google Scholar] [CrossRef]
  4. Hazra, R.N.; Samanta, S.K.; Chattopadhyay, K.C. Fuzzy topology redefined. Fuzzy Sets Syst. 1992, 45, 79–82. [Google Scholar] [CrossRef]
  5. Šostak, A. On a fuzzy topological structure. Rend. Circ. Mat. Palermo Suppl. Ser. II 1985, 11, 89–103. [Google Scholar]
  6. Coker, D.; Demirci, M. An introduction to intuitionistic fuzzy topological spaces in Sostak’s sense. Busefal 1996, 67, 67–76. [Google Scholar]
  7. Samanta, S.K.; Mondal, T.K. Intuitionistic gradation of openness: Intuitionistic fuzzy topology. Busefal 1997, 73, 8–17. [Google Scholar]
  8. Samanta, S.K.; Mondal, T.K. On intuitionistic gradation of openness. Fuzzy Sets Syst. 2002, 131, 323–336. [Google Scholar]
  9. Shi, D.L.; Baek, J.I.; Cheong, M.; Han, S.H.; Hur, K. Ordinary interval-valued fuzzifying topological spaces. Ann. Fuzzy Math. Inform. 2023, 25, 175–203. [Google Scholar]
  10. Molodtsov, D. Soft set theory-first results. Comput. Math. Appl. 1999, 37, 19–31. [Google Scholar] [CrossRef] [Green Version]
  11. Maji, P.K.; Biswas, R.; Roy, A.R. Soft set theory. Comput. Math. Appl. 2013, 45, 555–562. [Google Scholar] [CrossRef] [Green Version]
  12. Shabir, M.; Naz, M. On soft topological spaces. Comput. Math. Appl. 2011, 61, 1786–1799. [Google Scholar] [CrossRef] [Green Version]
  13. Aras, C.G.; Bayramov, S. On the Tietze extension theorem in soft topological spaces. Proc. Inst. Math. Mech. Nat. Acad. Sci. Azer. 2017, 43, 105–115. [Google Scholar]
  14. Bayramov, S.; Gunduz, C. Soft locally compact spaces and soft paracompact spaces. J. Math. System Sci. 2013, 3, 122–130. [Google Scholar]
  15. Cagman, N.; Enginoglu, S. Soft topology. Comput. Math. Appl. 2011, 62, 351–358. [Google Scholar]
  16. Das, S.; Samanta, S.K. Soft metric. Ann. Fuzzy Math. Inform. 2013, 6, 77–94. [Google Scholar]
  17. Hussain, S.; Ahmad, B. Some properties of soft topological spaces. Comput. Math. Appl. 2011, 62, 4058–4067. [Google Scholar] [CrossRef] [Green Version]
  18. Kočinac, L.D.R.; Al-Shami, T.M.; Çetkin, V. Selection principles in the context of soft sets: Menger spaces. Soft Comput. 2021, 25, 12693–12702. [Google Scholar] [CrossRef]
  19. Matejdes, M. Methodological remarks on soft topology. Soft Comput. 2021, 25, 4149–4156. [Google Scholar] [CrossRef]
  20. Min, W.K. A note on soft topological spaces. Comput. Math. Appl. 2011, 62, 3524–3528. [Google Scholar] [CrossRef] [Green Version]
  21. Alcantud, J.C.R. An operational characterization of soft topologies by crisp topologies. Mathematics 2021, 9, 1656. [Google Scholar] [CrossRef]
  22. Al-shami, T.M.; Kočinac, L.D.R. The equivalence between the enriched and extended soft topologies. Appl. Comput. Math. 2019, 18, 149–162. [Google Scholar]
  23. Aras, C.G.; Bayramov, S.; Veliyeva, K. Introduction to fuzzy topology on soft sets. Trans. Nat. Acad. Sci. Azerb. Ser. Phys. Tech. Math. Sci. Math. 2021, 41, 1–13. [Google Scholar]
  24. Bayramov, S.; Gunduz, C. Mappings on intuitionistic fuzzy topology of soft sets. Filomat 2021, 35, 4341–4351. [Google Scholar] [CrossRef]
  25. Moore, R.E.; Kearfott, R.B.; Cloud, M.J. Introduction to Interval Analysis; SIAM: Philadelphia, PA, USA, 2009. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Bayramov, S.; Aras, Ç.G.; Kočinac, L.D.R. Interval-Valued Topology on Soft Sets. Axioms 2023, 12, 692. https://doi.org/10.3390/axioms12070692

AMA Style

Bayramov S, Aras ÇG, Kočinac LDR. Interval-Valued Topology on Soft Sets. Axioms. 2023; 12(7):692. https://doi.org/10.3390/axioms12070692

Chicago/Turabian Style

Bayramov, Sadi, Çiğdem Gündüz Aras, and Ljubiša D. R. Kočinac. 2023. "Interval-Valued Topology on Soft Sets" Axioms 12, no. 7: 692. https://doi.org/10.3390/axioms12070692

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop