Some New Bullen-Type Inequalities Obtained via Fractional Integral Operators
Abstract
:1. Introduction
2. Main Results
3. Examples
Comparative Analysis of Classical and Improved Bounds
4. Applications
4.1. Special Means
- :
- :
- log-mean:
- mean:
- p-Logarithmic :
4.2. Quadrature Formula
4.3. -Digamma Function
4.4. Modified Bessel Function
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitrinovic, D.S.; Pećarixcx, J.; Fink, A.M. Classical and New Inequalities in Analysis; Mathematics and Its Applications (East European Series); Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1993; Volume 61. [Google Scholar]
- Dragomir, S.S.; Pearse, C.E.M. Selected Topics on Hermite-Hadamard Inequalities and Applications; RGMIA Monograps; Victoria University: Footscray, VIC, Australia, 2000. [Google Scholar]
- Rasheed, T.; Butt, S.I.; Pečarić, D.; Pečarić, J. Generalized Cyclic Jensen and Information Inequalities. Chaos Solitons Fractals 2022, 163, 112602. [Google Scholar] [CrossRef]
- Gasimov, Y.S.; Nápoles, J.E. Some refinements of Hermite-Hadamard inequality using k-fractional Caputo derivatives. Fract. Differ. Calc. 2022, 12, 209–221. [Google Scholar] [CrossRef]
- Agarwal, P.; Dragomir, S.S.; Jleli, M.; Samet, B. (Eds.) Advances in Mathematical Inequalities and Applications; Springer: Singapore, 2018. [Google Scholar]
- Qin, Y. Integral and Discrete Inequalities and Their Applications; Springer International Publishing: Basel, Switzerland, 2016. [Google Scholar]
- Fahad, A.; Ayesha; Wang, Y.; Butt, S.I. Jensen-Mercer and Hermite-Hadamard-Mercer Type Inequalities for GA-h-Convex Functions and Its Subclasses with Applications. Mathematics 2023, 11, 278. [Google Scholar] [CrossRef]
- Pečarić, J.; Tong, Y.L. Convex Functions, Partial Orderings, and Statistical Applications; Academic Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Tariq, M.; Ntouyas, S.K.; Shaikh, A.A. New Variant of Hermite-Hadamard, Fejér and Pachpatte-Type Inequality and Its Refinements Pertaining to Fractional Integral Operator. Fractal Fract. 2023, 7, 405. [Google Scholar] [CrossRef]
- Nápoles, J.E.; Bayraktar, B. On the generalized inequalities of the Hermite-Hadamard type. Filomat 2021, 35, 4917–4924. [Google Scholar] [CrossRef]
- Bayraktar, B.; Gürbüz, B. On some integral inequalities for (s,m)- convex functions. TWMS J. Appl. Eng. Math. 2020, 10, 288–295. [Google Scholar]
- Bullen, P.S. Error Estimates for Some Elementary Quadrature Rules; No. 602/633; University of Belgrade: Belgrade, Serbia, 1978; pp. 97–103. [Google Scholar]
- Tseng, K.-L.; Hwang, S.-R.; Hsua, K.-C. Hadamard-type and Bullen-type inequalities for Lipschitzian functions and their applications. Comput. Math. Appl. 2012, 64, 651–660. [Google Scholar] [CrossRef] [Green Version]
- Çakmak, M. The differentiable h-convex functions involving the Bullen inequality. Acta Univ. Apulensis 2021, 65, 29–36. [Google Scholar]
- Erden, S.; Sarikaya, M.Z. Generalized Bullen-type inequalities for local fractional integrals and its applications. Palest. J. Math 2020, 9, 945–956. [Google Scholar]
- Sarikaya, M.Z.; Tunc, T.; Budak, H. On generalized some integral inequalities for local fractional integrals. Appl. Math. Comput. 2016, 276, 316–323. [Google Scholar]
- Işcan, T.; Toplu, T.; Yetgin, F. Some new inequalities on generalization of Hermite-Hadamard and Bullen type inequalities, applications to trapezoidal and midpoint formula. Kragujev. J. Math. 2021, 45, 647–657. [Google Scholar] [CrossRef]
- Hussain, S.; Mehboob, S. On some generalized fractional integral Bullen type inequalities with applications. J. Fract. Calc. Nonlinear Syst. 2021, 2, 93–112. [Google Scholar] [CrossRef]
- Yaşar, B.N.; Aktan, N.; Kizilkan, G.Ç. Generalization of Bullen type, trapezoid type, midpoint type and Simpson type inequalities for s-convex in the fourth sense. Turk. J. Inequal. 2022, 6, 40–51. [Google Scholar]
- Boulares, H.; Meftah, B.; Moumen, A.; Shafqat, R.; Saber, H.; Alraqad, T.; Ali, E. Fractional multiplicative Bullen-type inequalities for multiplicative differentiable functions. Symmetry 2023, 15, 451. [Google Scholar] [CrossRef]
- Bayraktar, B.; Butt, S.I.; Napoles, J.E.; Rabossi, F. Some New Estimates of Integral Inequalities and Their Applications. Ukr. Math. J. in press.
- Adjabi, Y.; Jarad, F.; Baleanu, D.; Abdeljawad, T. On Cauchy problems with Caputo Hadamard fractional derivatives. J. Comput. Anal. Appl. 2016, 21, 661–681. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Cai, Z.; Huang, J.; Huang, L. Periodic orbit analysis for the delayed Filippov system. Proc. Am. Math. Soc. 2018, 146, 4667–4682. [Google Scholar] [CrossRef]
- Chen, T.; Huang, L.; Yu, P.; Huang, W. Bifurcation of Limit Cycles at Infinity in Piecewise Polynomial Systems. Nonlinear Anal. Real World Appl. 2018, 41, 82–106. [Google Scholar] [CrossRef]
- Liu, J.B.; Butt, S.I.; Nasir, J.; Aslam, A.; Fahad, A.; Soontharanon, J. Jensen-Mercer Variant of Hermite-Hadamard Type Inequalities via Atangana-Baleanu Fractional Operator. AIMS Math. 2022, 7, 2123–2141. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Budak, N. Hermite-Hadamards inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Du, T.; Liu, J.; Yu, Y. Certain Error Bounds on the Parametrized Integral Inequalitiues in the Sense of Fractal Sets. Chaos Solitons Fractals 2022, 161, 112328. [Google Scholar]
- Butt, S.I.; Yousaf, S.; Akdemir, A.O.; Dokuyucu, M.A. New Hadamard-type integral inequalities via a general form of fractionalintegral operators. Chaos Solitons Fractals 2021, 148, 111025. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Kórus, P.; Nápoles, J.E. Some generalized Hermite–Hadamard–Fejér inequality for convex functions. Adv. Differ. Equ. 2021, 1, 1–11. [Google Scholar] [CrossRef]
- Iscan, I. New refinements for integral and sum forms of Hölder inequality. J. Inequalities Appl. 2019, 2019, 304. [Google Scholar]
- Kadakal, M.; Iscan, I.; Kadakal, H.; Bekar, K. On improvements of some integral inequalities. Honam Math. J. 2021, 43, 441–452. [Google Scholar]
- Kıramcı, U. On Some Hermite-Hadamard Type İnequlities for Twice Differentable (α,m)-convex functions and Applications. RGMIA 2017, 20. [Google Scholar]
- Yuan, X.; Xu, L.; Du, T. Simpson-like inequalities for twice differentiable (s, P)-convex mappings involving with AB-fractional integrals and their applications. Fractals 2023, 31, 2350024. [Google Scholar] [CrossRef]
- Watson, G.N. A Treatise on the Theory of Bessel Functions; Cambridge University Press: Cambridge, UK, 1944. [Google Scholar]
- Luke, Y.L. The Special Functions and Their Approximations; Academic Press: New York, NY, USA, 1969; Volume 1. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fahad, A.; Butt, S.I.; Bayraktar, B.; Anwar, M.; Wang, Y. Some New Bullen-Type Inequalities Obtained via Fractional Integral Operators. Axioms 2023, 12, 691. https://doi.org/10.3390/axioms12070691
Fahad A, Butt SI, Bayraktar B, Anwar M, Wang Y. Some New Bullen-Type Inequalities Obtained via Fractional Integral Operators. Axioms. 2023; 12(7):691. https://doi.org/10.3390/axioms12070691
Chicago/Turabian StyleFahad, Asfand, Saad Ihsaan Butt, Bahtiyar Bayraktar, Mehran Anwar, and Yuanheng Wang. 2023. "Some New Bullen-Type Inequalities Obtained via Fractional Integral Operators" Axioms 12, no. 7: 691. https://doi.org/10.3390/axioms12070691
APA StyleFahad, A., Butt, S. I., Bayraktar, B., Anwar, M., & Wang, Y. (2023). Some New Bullen-Type Inequalities Obtained via Fractional Integral Operators. Axioms, 12(7), 691. https://doi.org/10.3390/axioms12070691