Applications of Beta Negative Binomial Distribution and Laguerre Polynomials on Ozaki Bi-Close-to-Convex Functions
Abstract
:1. Introduction
2. Main Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duren, P.L. Univalent Functions; Grundlehren der Mathematischen Wissenschaften, Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
- Ali, R.M.; Lee, S.K.; Ravichandran, V.; Supramaniam, S. Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Appl. Math. Lett. 2012, 25, 344–351. [Google Scholar] [CrossRef]
- Bulut, S.; Magesh, N.; Abirami, C. A comprehensive class of analytic bi-univalent functions by means of Chebyshev polynomials. J. Fract. Calc. Appl. 2017, 8, 32–39. [Google Scholar]
- Srivastava, H.M.; Wanas, A.K.; Srivastava, R. Applications of the q-Srivastava-Attiya operator involving a certain family of bi-univalent functions associated with the Horadam polynomials. Symmetry 2021, 13, 1230. [Google Scholar] [CrossRef]
- Akgül, A. (P,Q)-Lucas polynomial coefficient inequalities of the bi-univalent function class. Turkish J. Math. 2019, 43, 2170–2176. [Google Scholar] [CrossRef]
- Al-Amoush, A.G. Coefficient estimates for a new subclasses of λ-pseudo biunivalent functions with respect to symmetrical points associated with the Horadam Polynomials. Turk. J. Math. 2019, 43, 2865–2875. [Google Scholar] [CrossRef]
- Altınkaya, Ş. Inclusion properties of Lucas polynomials for bi-univalent functions introduced through the q-analogue of the Noor integral operator. Turkish J. Math. 2019, 43, 620–629. [Google Scholar] [CrossRef]
- Cotîrlǎ, L.I. New classes of analytic and bi-univalent functions. AIMS Math. 2021, 6, 10642–10651. [Google Scholar] [CrossRef]
- Güney, H.Ö.; Murugusundaramoorthy, G.; Sokół, J. Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers. Acta Univ. Sapient. Math. 2018, 10, 70–84. [Google Scholar] [CrossRef]
- Khan, B.; Srivastava, H.M.; Tahir, M.; Darus, M.; Ahmad, Q.Z.; Khan, N. Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions. AIMS Math. 2021, 6, 1024–1039. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Motamednezhad, A.; Adegani, E.A. Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator. Mathematics 2020, 8, 172. [Google Scholar] [CrossRef] [Green Version]
- Wanas, A.K. Applications of (M,N)-Lucas polynomials for holomorphic and bi-univalent functions. Filomat 2020, 34, 3361–3368. [Google Scholar] [CrossRef]
- Wanas, A.K.; Cotîrlǎ, L.-I. Initial coefficient estimates and Fekete–Szegö inequalities for new families of bi-univalent functions governed by (p − q)-Wanas operator. Symmetry 2021, 13, 2118. [Google Scholar] [CrossRef]
- Wanas, A.K.; Cotîrlǎ, L.-I. Applications of (M − N)-Lucas polynomials on a certain family of bi-univalent functions. Mathematics 2022, 10, 595. [Google Scholar] [CrossRef]
- Wanas, A.K.; Lupaş, A.A. Applications of Laguerre polynomials on a new family of bi-prestarlike functions. Symmetry 2022, 14, 645. [Google Scholar] [CrossRef]
- Páll-Szabó, A.O.; Wanas, A.K. Coefficient estimates for some new classes of bi- Bazilevic functions of Ma-Minda type involving the Salagean integro-differential operator. Quaest. Math. 2021, 44, 495–502. [Google Scholar]
- Amourah, A.; Frasin, B.A.; Murugusundaramoorthy, G.; Al-Hawary, T. Bi-Bazilevič functions of order ϑ + iδ associated with (p,q)-Lucas polynomials. AIMS Math. 2021, 6, 4296–4305. [Google Scholar] [CrossRef]
- Lebedev, N.N. Special Functions and Their Applications; Translated from the revised Russian edition (Moscow, 1963) by Richard A. Silverman; Prentice-Hall: Englewood Cliffs, NJ, USA, 1965. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; Series on Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker Inc.: New York, NY, USA, 2000; Volume 225. [Google Scholar]
- Altınkaya, Ş.; Yalçin, S. Poisson distribution series for certain subclasses of starlike functions with negative coefficients. Ann. Oradea Univ. Math. Fasc. 2017, 24, 5–8. [Google Scholar]
- El-Deeb, S.M.; Bulboaca, T.; Dziok, J. Pascal distribution series connected with certain subclasses of univalent functions. Kyungpook Math. J. 2019, 59, 301–314. [Google Scholar]
- Nazeer, W.; Mehmood, Q.; Kang, S.M.; Haq, A.U. An application of Binomial distribution series on certain analytic functions. J. Comput. Anal. Appl. 2019, 26, 11–17. [Google Scholar]
- Porwal, S. An application of a Poisson distribution series on certain analytic functions. J. Complex Anal. 2014, 2014, 984135. [Google Scholar] [CrossRef]
- Porwal, S.; Kumar, M. A unified study on starlike and convex functions associated with Poisson distribution series. Afr. Mat. 2016, 27, 10–21. [Google Scholar] [CrossRef]
- Wanas, A.K.; Khuttar, J.A. Applications of Borel distribution series on analytic functions. Earthline J. Math. Sci. 2020, 4, 71–82. [Google Scholar] [CrossRef]
- Wanas, A.K.; Al-Ziadi, N.A. Applications of Beta negative binomial distribution series on holomorphic functions. Earthline J. Math. Sci. 2021, 6, 271–292. [Google Scholar] [CrossRef]
- Keogh, F.R.; Merkes, E.P. A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Shbeil, I.; Wanas, A.K.; Saliu, A.; Cătaş, A. Applications of Beta Negative Binomial Distribution and Laguerre Polynomials on Ozaki Bi-Close-to-Convex Functions. Axioms 2022, 11, 451. https://doi.org/10.3390/axioms11090451
Al-Shbeil I, Wanas AK, Saliu A, Cătaş A. Applications of Beta Negative Binomial Distribution and Laguerre Polynomials on Ozaki Bi-Close-to-Convex Functions. Axioms. 2022; 11(9):451. https://doi.org/10.3390/axioms11090451
Chicago/Turabian StyleAl-Shbeil, Isra, Abbas Kareem Wanas, Afis Saliu, and Adriana Cătaş. 2022. "Applications of Beta Negative Binomial Distribution and Laguerre Polynomials on Ozaki Bi-Close-to-Convex Functions" Axioms 11, no. 9: 451. https://doi.org/10.3390/axioms11090451
APA StyleAl-Shbeil, I., Wanas, A. K., Saliu, A., & Cătaş, A. (2022). Applications of Beta Negative Binomial Distribution and Laguerre Polynomials on Ozaki Bi-Close-to-Convex Functions. Axioms, 11(9), 451. https://doi.org/10.3390/axioms11090451